Pseudorotation motion in tetrahydrofuran: an ab initio study.

The use of different models based on experimental information about the observed level splitings, rotational constants, and far-infrared transition frequencies leads to different predictions on the equilibrium geometry for tetrahydrofuran. High-level ab initio calculations [coupled cluster singles, doubles (triples)/complete basis set (second order Moller-Plesset triple, quadrupole, quintuple)+zero-point energy(anharmonic)] suggest that the equilibrium conformation of tetrahydrofuran is an envelope C(s) structure. The theoretical geometrical parameters might be helpful to plan further microwave spectroscopic studies in order to get a physical interpretation of the measurements.

[1]  T. Dunning,et al.  A Road Map for the Calculation of Molecular Binding Energies , 2000 .

[2]  D. O. Harris,et al.  Ring Puckering in Five‐Membered Rings. I. General Theory , 1969 .

[3]  Trygve Helgaker,et al.  Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .

[4]  J. Sordo Performance of CCSDT for first row AB/AB− diatomics: Dissociation energies and electron affinities , 2001 .

[5]  J. Sordo QUALITY: A program to assess basis set quality , 1998 .

[6]  F. D. Lucia,et al.  The absorption spectroscopy of the lowest pseudorotational states of tetrahydrofuran , 2003 .

[7]  H. Valdés,et al.  The N2O·N2O, N2O·SO2, and (N2O)2·SO2 van der Waals Complexes: An ab Initio Theoretical Analysis , 2004 .

[8]  Y. Kang,et al.  PSEUDOROTATION IN HETEROCYCLIC FIVE-MEMBERED RINGS : TETRAHYDROFURAN AND PYRROLIDINE , 1996 .

[9]  H. Valdés,et al.  The OCS (HCCH)2 van der Waals complex: ab initio predictions for the geometry and dynamics , 2004 .

[10]  Russell M. Pitzer,et al.  The barrier to internal rotation in ethane , 1983 .

[11]  A. H. Mamleev,et al.  Microwave Spectrum and Hindered Pseudorotation of Tetrahydrofuran , 2001 .

[12]  V. M. Rayón,et al.  Cyclopropane⋯sulfur dioxide and ethylene⋯sulfur dioxide van der Waals complexes: A theoretical study , 1999 .

[13]  D R Yarkony,et al.  Modern electronic structure theory , 1995 .

[14]  Vincenzo Barone,et al.  Vibrational zero-point energies and thermodynamic functions beyond the harmonic approximation. , 2004, The Journal of chemical physics.

[15]  D. O. Harris,et al.  Ring Puckering in Five‐Membered Rings. II. The Microwave Spectrum, Dipole Moment, and Barrier to Pseudorotation in Tetrahydrofuran , 1969 .

[16]  J. López,et al.  PSEUDOROTATION PATHWAY AND EQUILIBRIUM STRUCTURE FROM THE ROTATIONAL SPECTRUM OF JET-COOLED TETRAHYDROFURAN , 1999 .

[17]  Trygve Helgaker,et al.  Basis-set convergence in correlated calculations on Ne, N2, and H2O , 1998 .

[18]  R. Davidson,et al.  Energy levels for pseudorotation and their application to cyclopentane, tetrahydrofuran and 1,3-dioxolan , 1972 .

[19]  H. Jobic,et al.  Geometric Structure and Vibrational Spectrum of Tetrahydrofuran , 1993 .

[20]  David C. Young,et al.  Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems , 2001 .

[21]  H. Bernhard Schlegel,et al.  Geometry Optimization on Potential Energy Surfaces , 1995 .

[22]  J. López,et al.  The shape of neutral valine. , 2004, Angewandte Chemie.

[23]  Kenneth S. Pitzer,et al.  The Thermodynamics and Molecular Structure of Cyclopentane1 , 1947 .

[24]  D. Cremer,et al.  Extension of the Karplus Relationship for NMR Spin-Spin Coupling Constants to Nonplanar Ring Systems: Pseudorotation of Cyclopentane , 2003 .

[25]  H. Valdés,et al.  (OCS)3 van der Waals Complex: A Theoretical Study , 2003 .

[26]  D. Cremer,et al.  Molecular orbital theory of the electronic structure of organic compounds. XXIII. Pseudorotation in saturated five-membered ring compounds , 1975 .

[27]  M. Ratner Molecular electronic-structure theory , 2000 .