An improved harmony search algorithm for solving optimization problems

This paper develops an Improved harmony search (IHS) algorithm for solving optimization problems. IHS employs a novel method for generating new solution vectors that enhances accuracy and convergence rate of harmony search (HS) algorithm. In this paper the impacts of constant parameters on harmony search algorithm are discussed and a strategy for tuning these parameters is presented. The IHS algorithm has been successfully applied to various benchmarking and standard engineering optimization problems. Numerical results reveal that the proposed algorithm can find better solutions when compared to HS and other heuristic or deterministic methods and is a powerful search algorithm for various engineering optimization problems.

[1]  Z. Geem,et al.  PARAMETER ESTIMATION OF THE NONLINEAR MUSKINGUM MODEL USING HARMONY SEARCH 1 , 2001 .

[2]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[3]  Jasbir S. Arora,et al.  Introduction to Optimum Design , 1988 .

[4]  C. Coello,et al.  CONSTRAINT-HANDLING USING AN EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION TECHNIQUE , 2000 .

[5]  Ashok Dhondu Belegundu,et al.  A Study of Mathematical Programming Methods for Structural Optimization , 1985 .

[6]  Zong Woo Geem,et al.  Harmony Search Optimization: Application to Pipe Network Design , 2002 .

[7]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[8]  K. M. Ragsdell,et al.  Optimal Design of a Class of Welded Structures Using Geometric Programming , 1976 .

[9]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[10]  Kalyanmoy Deb,et al.  GeneAS: A Robust Optimal Design Technique for Mechanical Component Design , 1997 .

[11]  Carlos A. Coello Coello,et al.  Use of a self-adaptive penalty approach for engineering optimization problems , 2000 .

[12]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms, Homomorphous Mappings, and Constrained Parameter Optimization , 1999, Evolutionary Computation.

[13]  K. Lee,et al.  A new structural optimization method based on the harmony search algorithm , 2004 .

[14]  K. Lee,et al.  A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice , 2005 .

[15]  James N. Siddall,et al.  Analytical decision-making in engineering design , 1972 .

[16]  A. Ravindran,et al.  Engineering Optimization: Methods and Applications , 2006 .

[17]  Carlos Artemio Coello-Coello,et al.  Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art , 2002 .

[18]  E. Sandgren,et al.  Nonlinear Integer and Discrete Programming in Mechanical Design Optimization , 1990 .

[19]  Kalyanmoy Deb,et al.  Optimal design of a welded beam via genetic algorithms , 1991 .

[20]  Carlos A. Coello Coello,et al.  Constraint-handling in genetic algorithms through the use of dominance-based tournament selection , 2002, Adv. Eng. Informatics.

[21]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms in Engineering Applications , 1997, Springer Berlin Heidelberg.

[22]  K. Lee,et al.  A new metaheuristic algorithm for continuous engineering optimization : harmony search theory and practice , 2005 .

[23]  S. Wu,et al.  GENETIC ALGORITHMS FOR NONLINEAR MIXED DISCRETE-INTEGER OPTIMIZATION PROBLEMS VIA META-GENETIC PARAMETER OPTIMIZATION , 1995 .

[24]  Zong Woo Geem,et al.  Harmony Search for Generalized Orienteering Problem: Best Touring in China , 2005, ICNC.

[25]  S. N. Kramer,et al.  An Augmented Lagrange Multiplier Based Method for Mixed Integer Discrete Continuous Optimization and Its Applications to Mechanical Design , 1994 .