Using High-Dimensional Image Models to Perform Highly Undetectable Steganography

This paper presents a complete methodology for designing practical and highly-undetectable stegosystems for real digital media. The main design principle is to minimize a suitably-defined distortion by means of efficient coding algorithm. The distortion is defined as a weighted difference of extended state-of-the-art feature vectors already used in steganalysis. This allows us to "preserve" the model used by steganalyst and thus be undetectable even for large payloads. This framework can be efficiently implemented even when the dimensionality of the feature set used by the embedder is larger than 107. The high dimensional model is necessary to avoid known security weaknesses. Although high-dimensional models might be problem in steganalysis, we explain, why they are acceptable in steganography. As an example, we introduce HUGO, a new embedding algorithm for spatial-domain digital images and we contrast its performance with LSB matching. On the BOWS2 image database and in contrast with LSB matching, HUGO allows the embedder to hide 7× longer message with the same level of security level.

[1]  Ying Wang,et al.  Perfectly Secure Steganography: Capacity, Error Exponents, and Code Constructions , 2007, IEEE Transactions on Information Theory.

[2]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[3]  Elke Franz Steganography Preserving Statistical Properties , 2002, Information Hiding.

[4]  Jessica J. Fridrich,et al.  Minimizing the embedding impact in steganography , 2006, MM&Sec '06.

[5]  Masoud Nikravesh,et al.  Feature Extraction - Foundations and Applications , 2006, Feature Extraction.

[6]  Tomás Pevný,et al.  Steganalysis by Subtractive Pixel Adjacency Matrix , 2009, IEEE Transactions on Information Forensics and Security.

[7]  Jessica J. Fridrich,et al.  Minimizing embedding impact in steganography using trellis-coded quantization , 2010, Electronic Imaging.

[8]  Dana S. Richards,et al.  Modified Matrix Encoding Technique for Minimal Distortion Steganography , 2006, Information Hiding.

[9]  Rainer Böhme,et al.  Revisiting weighted stego-image steganalysis , 2008, Electronic Imaging.

[10]  Jessica J. Fridrich,et al.  New blind steganalysis and its implications , 2006, Electronic Imaging.

[11]  Mauro Barni,et al.  MPSteg: hiding a message in the matching pursuit domain , 2006, Electronic Imaging.

[12]  Tomás Pevný,et al.  The square root law of steganographic capacity , 2008, MM&Sec '08.

[13]  Christian Ullerich,et al.  Weaknesses of MB2 , 2007, IWDW.

[14]  Ingemar J. Cox,et al.  Digital Watermarking , 2003, Lecture Notes in Computer Science.

[15]  Hyoung Joong Kim,et al.  Less detectable JPEG steganography method based on heuristic optimization and BCH syndrome coding , 2009, MM&Sec '09.

[16]  Phil Sallee,et al.  Model-Based Steganography , 2003, IWDW.

[17]  Christian Cachin,et al.  An information-theoretic model for steganography , 1998, Inf. Comput..

[18]  Tomás Pevný,et al.  Statistically undetectable jpeg steganography: dead ends challenges, and opportunities , 2007, MM&Sec.

[19]  Xinpeng Zhang,et al.  Efficient double-layered steganographic embedding , 2007 .

[20]  Masoud Nikravesh,et al.  Feature Extraction: Foundations and Applications (Studies in Fuzziness and Soft Computing) , 2006 .

[21]  Elke Franz,et al.  Improved embedding based on a set of cover images , 2009, MM&Sec '09.

[22]  William A. Pearlman,et al.  Steganalysis of additive-noise modelable information hiding , 2003, IS&T/SPIE Electronic Imaging.

[23]  Jessica J. Fridrich,et al.  Practical methods for minimizing embedding impact in steganography , 2007, Electronic Imaging.

[24]  Jessica J. Fridrich,et al.  Fisher Information Determines Capacity of ε-Secure Steganography , 2009, Information Hiding.

[25]  Jessica J. Fridrich,et al.  On completeness of feature spaces in blind steganalysis , 2008, MM&Sec '08.

[26]  Tomás Pevný,et al.  Modern steganalysis can detect YASS , 2010, Electronic Imaging.

[27]  Tomás Pevný,et al.  Benchmarking for Steganography , 2008, Information Hiding.

[28]  Jessica J. Fridrich,et al.  Perturbed quantization steganography , 2005, Multimedia Systems.

[29]  Daniil Ryabko,et al.  Asymptotically optimal perfect steganographic systems , 2009, Probl. Inf. Transm..

[30]  Jessica Fridrich,et al.  Steganography in Digital Media: References , 2009 .

[31]  Ross J. Anderson Stretching the Limits of Steganography , 1996, Information Hiding.

[32]  Jessica J. Fridrich,et al.  The square root law of steganographic capacity for Markov covers , 2009, Electronic Imaging.

[33]  Tomás Pevný,et al.  Steganalysis by subtractive pixel adjacency matrix , 2010, IEEE Trans. Inf. Forensics Secur..

[34]  Andreas Westfeld,et al.  F5-A Steganographic Algorithm , 2001, Information Hiding.