Morphology of Hippocampal Neurons

“Form follows function” states the credo of modern architecture, defining how the shape of an object should be determined by its function. While natural objects, such as neurons, have not taken their shapes on design boards, the inquisitive observer can nevertheless gain insights about their function by studying morphological features. This teleological mindset was the main driving force behind the early neuroanatomical investigations, culminating in the work of Cajal, which formed the foundation of modern neuroscience. Neuroanatomical analysis remains an essential part of neuroscience research today and computational neuroscientists, in particular, benefit from the flow of new morphological data with increasing detail and resolution.

[1]  Horacio G Rotstein,et al.  Orthogonal arrangement of rhythm-generating microcircuits in the hippocampus. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[2]  P. Schwartzkroin,et al.  A comparison of rat hippocampal mossy cells and CA3c pyramidal cells. , 1993, Journal of neurophysiology.

[3]  P. Somogyi,et al.  Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo , 2004, Nature Neuroscience.

[4]  J J Jack,et al.  Solutions for transients in arbitrarily branching cables: I. Voltage recording with a somatic shunt. , 1993, Biophysical journal.

[5]  M. Frotscher,et al.  Divergence of hippocampal mossy fibers , 1994, Synapse.

[6]  P. Somogyi,et al.  A High Degree of Spatial Selectivity in the Axonal and Dendritic Domains of Physiologically Identified Local‐circuit Neurons in the Dentate Gyms of the Rat Hippocampus , 1993, The European journal of neuroscience.

[7]  T. Kosaka,et al.  Cellular architecture of the mouse hippocampus: A quantitative aspect of chemically defined GABAergic neurons with stereology , 2006, Neuroscience Research.

[8]  P. Dutar,et al.  Glutamatergic synaptic responses and long‐term potentiation are impaired in the CA1 hippocampal area of calbindin D28k‐deficient mice , 1999, Synapse.

[9]  P. Jonas,et al.  Efficacy and Stability of Quantal GABA Release at a Hippocampal Interneuron–Principal Neuron Synapse , 2000, The Journal of Neuroscience.

[10]  P. Somogyi,et al.  Subdivisions in the Multiple GABAergic Innervation of Granule Cells in the Dentate Gyrus of the Rat Hippocampus , 1993, The European journal of neuroscience.

[11]  K M Harris,et al.  Three‐dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus , 1992, The Journal of comparative neurology.

[12]  T. Freund,et al.  Synaptic Input of Horizontal Interneurons in Stratum Oriens of the Hippocampal CA1 Subfield: Structural Basis of Feed‐back Activation , 1995, The European journal of neuroscience.

[13]  B Sakmann,et al.  Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  W. Levy,et al.  A quantitative anatomical study of the granule cell dendritic fields of the rat dentate gyrus using a novel probabilistic method , 1982, The Journal of comparative neurology.

[15]  N. Bannister,et al.  Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: I. Branching patterns , 1995, The Journal of comparative neurology.

[16]  T. Freund,et al.  Total Number and Ratio of Excitatory and Inhibitory Synapses Converging onto Single Interneurons of Different Types in the CA1 Area of the Rat Hippocampus , 1999, The Journal of Neuroscience.

[17]  M. Frotscher,et al.  Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[18]  György Buzsáki,et al.  Three-dimensional reconstruction of the axon arbor of a CA3 pyramidal cell recorded and filled in vivo , 2007, Brain Structure and Function.

[19]  P. Somogyi,et al.  Distribution of GABAergic synapses and their targets in the dentate gyrus of rat: a quantitative immunoelectron microscopic analysis. , 1993, Journal fur Hirnforschung.

[20]  Hannah Monyer,et al.  A Novel Type of GABAergic Interneuron Connecting the Input and the Output Regions of the Hippocampus , 1997, The Journal of Neuroscience.

[21]  T. Blackstad Commissural connections of the hippocampal region in the rat, with special reference to their mode of termination , 1956, The Journal of comparative neurology.

[22]  Afia B Ali,et al.  Presynaptic Inhibition of GABAA receptor-mediated unitary IPSPs by cannabinoid receptors at synapses between CCK-positive interneurons in rat hippocampus. , 2007, Journal of neurophysiology.

[23]  T. Freund,et al.  Electrotonic profile and passive propagation of synaptic potentials in three subpopulations of hippocampal CA1 interneurons , 2001, Neuroscience.

[24]  P. Somogyi,et al.  Neuronal Diversity in GABAergic Long-Range Projections from the Hippocampus , 2007, The Journal of Neuroscience.

[25]  D A Turner,et al.  Morphometric and electrical properties of reconstructed hippocampal CA3 neurons recorded in vivo , 1995, The Journal of comparative neurology.

[26]  M. Frotscher,et al.  A hippocampal interneuron associated with the mossy fiber system. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Arthur W. Toga,et al.  Genomic–anatomic evidence for distinct functional domains in hippocampal field CA1 , 2009, Proceedings of the National Academy of Sciences.

[28]  Thomas Klausberger,et al.  GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus , 2009, The European journal of neuroscience.

[29]  D A Turner,et al.  Dendrites of classes of hippocampal neurons differ in structural complexity and branching patterns , 1999, The Journal of comparative neurology.

[30]  Marco Capogna,et al.  Neurogliaform Neurons Form a Novel Inhibitory Network in the Hippocampal CA1 Area , 2005, The Journal of Neuroscience.

[31]  P. Somogyi,et al.  The metabotropic glutamate receptor (mGluRlα) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction , 1993, Neuron.

[32]  E. Callaway,et al.  Redefining the boundaries of the hippocampal CA2 subfield in the mouse using gene expression and 3‐dimensional reconstruction , 2005, The Journal of comparative neurology.

[33]  D A Turner,et al.  Dendritic properties of hippocampal CA1 pyramidal neurons in the rat: Intracellular staining in vivo and in vitro , 1998, The Journal of comparative neurology.

[34]  G. Buzsáki,et al.  Unusual Target Selectivity of Perisomatic Inhibitory Cells in the Hilar Region of the Rat Hippocampus , 2000, The Journal of Neuroscience.

[35]  D. Rusakov,et al.  GABAB Receptor Modulation of Feedforward Inhibition through Hippocampal Neurogliaform Cells , 2008, The Journal of Neuroscience.

[36]  L. Slomianka,et al.  Hippocampal pyramidal cells: the reemergence of cortical lamination , 2011, Brain Structure and Function.

[37]  M. Frotscher,et al.  “Dormant basket cell” hypothesis revisited: Relative vulnerabilities of dentate gyrus mossy cells and inhibitory interneurons after hippocampal status epilepticus in the rat , 2003, The Journal of comparative neurology.

[38]  J. Lacaille,et al.  Local circuit interactions between oriens/alveus interneurons and CA1 pyramidal cells in hippocampal slices: electrophysiology and morphology , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  Nelson Spruston,et al.  Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites , 2005, The Journal of physiology.

[40]  M. Frotscher,et al.  Laminating the hippocampus , 2006, Nature Reviews Neuroscience.

[41]  G. Stuart,et al.  Site of Action Potential Initiation in Layer 5 Pyramidal Neurons , 2006, The Journal of Neuroscience.

[42]  H. Scharfman Dentate hilar cells with dendrites in the molecular layer have lower thresholds for synaptic activation by perforant path than granule cells , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  Karen L. Smith,et al.  Novel Hippocampal Interneuronal Subtypes Identified Using Transgenic Mice That Express Green Fluorescent Protein in GABAergic Interneurons , 2000, The Journal of Neuroscience.

[44]  Csaba Varga,et al.  Regulation of cortical microcircuits by unitary GABAergic volume transmission , 2009, Nature.

[45]  N. Tamamaki,et al.  Three-dimensional analysis of the whole axonal arbors originating from single CA2 pyramidal neurons in the rat hippocampus with the aid of a computer graphic technique , 1988, Brain Research.

[46]  N. Bannister,et al.  Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: II. Spine distributions , 1995, The Journal of comparative neurology.

[47]  L. Acsády,et al.  Principal cells are the postsynaptic targets of supramammillary afferents in the hippocampus of the rat , 1994, Hippocampus.

[48]  P. Somogyi,et al.  Metabotropic Glutamate Receptor 8-Expressing Nerve Terminals Target Subsets of GABAergic Neurons in the Hippocampus , 2005, The Journal of Neuroscience.

[49]  Corticotropin‐releasing hormone (CRH)‐containing neurons in the immature rat hippocampal formation: Light and electron microscopic features and colocalization with glutamate decarboxylase and parvalbumin , 1998, Hippocampus.

[50]  G. Stanwood,et al.  Glutamate spillover augments GABA synthesis and release from axodendritic synapses in rat hippocampus , 2009, Hippocampus.

[51]  L. Seress,et al.  Structure of the granular layer of the rat dentate gyrus. A light microscopic and Golgi study. , 1981, Journal of anatomy.

[52]  T. Freund,et al.  Differences between Somatic and Dendritic Inhibition in the Hippocampus , 1996, Neuron.

[53]  Guoping Feng,et al.  3D‐reconstruction and functional properties of GFP‐positive and GFP‐negative granule cells in the fascia dentata of the Thy1‐GFP mouse , 2008, Hippocampus.

[54]  L. Acsády,et al.  Target Selectivity and Neurochemical Characteristics of VIP‐immunoreactive Interneurons in the Rat Dentate Gyrus , 1996, The European journal of neuroscience.

[55]  Jozsef Csicsvari,et al.  Complementary Roles of Cholecystokinin- and Parvalbumin-Expressing GABAergic Neurons in Hippocampal Network Oscillations , 2005, The Journal of Neuroscience.

[56]  P. Somogyi,et al.  A new type of specific interneuron in the monkey hippocampus forming synapses exclusively with the axon initial segments of pyramidal cells , 1983, Brain Research.

[57]  H. Scharfman,et al.  Evidence from simultaneous intracellular recordings in rat hippocampal slices that area CA3 pyramidal cells innervate dentate hilar mossy cells. , 1994, Journal of neurophysiology.

[58]  Kerry J Ressler,et al.  RGS14 is a natural suppressor of both synaptic plasticity in CA2 neurons and hippocampal-based learning and memory , 2010, Proceedings of the National Academy of Sciences.

[59]  Peter Somogyi,et al.  Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro , 2000, The Journal of physiology.

[60]  K. Rockland,et al.  Expression of COUP-TFII Nuclear Receptor in Restricted GABAergic Neuronal Populations in the Adult Rat Hippocampus , 2010, The Journal of Neuroscience.

[61]  Allan R. Jones,et al.  Genomic Anatomy of the Hippocampus , 2008, Neuron.

[62]  Marco Capogna,et al.  Specific inhibitory synapses shift the balance from feedforward to feedback inhibition of hippocampal CA1 pyramidal cells , 2007, The European journal of neuroscience.

[63]  P. Jonas,et al.  Postnatal Differentiation of Basket Cells from Slow to Fast Signaling Devices , 2008, The Journal of Neuroscience.

[64]  T. Blackstad,et al.  Special axo‐dendritic synapses in the hippocampal cortex: Electron and light microscopic studies on the layer of mossy fibers , 1961, The Journal of comparative neurology.

[65]  Attila Losonczy,et al.  Persistently active cannabinoid receptors mute a subpopulation of hippocampal interneurons. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[66]  R. Traub,et al.  A branching dendritic model of a rodent CA3 pyramidal neurone. , 1994, The Journal of physiology.

[67]  Hannah Monyer,et al.  Differential involvement of oriens/pyramidale interneurones in hippocampal network oscillations in vitro , 2005, The Journal of physiology.

[68]  György Buzsáki,et al.  Hippocampal CA3 pyramidal cells selectively innervate aspiny interneurons , 2006, The European journal of neuroscience.

[69]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[70]  C. McBain,et al.  Activation of metabotropic glutamate receptors differentially affects two classes of hippocampal interneurons and potentiates excitatory synaptic transmission , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[71]  P. Somogyi,et al.  Properties of unitary IPSPs evoked by anatomically identified basket cells in the rat hippocampus , 1995, The European journal of neuroscience.

[72]  H. Katsumaru,et al.  GABAergic neurons containing the Ca2+-binding protein parvalbumin in the rat hippocampus and dentate gyrus , 1987, Brain Research.

[73]  P. Somogyi,et al.  Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus. , 1994, Journal of neurophysiology.

[74]  R. Nicoll,et al.  Glutamate and gamma-aminobutyric acid mediate a heterosynaptic depression at mossy fiber synapses in the hippocampus. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[75]  I. Módy,et al.  Synaptic Communication among Hippocampal Interneurons: Properties of Spontaneous IPSCs in Morphologically Identified Cells , 1997, The Journal of Neuroscience.

[76]  K. Tóth,et al.  Stratum radiatum giant cells: a type of principal cell in the rat hippocampus , 1998, The European journal of neuroscience.

[77]  B. Claiborne,et al.  Distribution of thorny excrescences on CA3 pyramidal neurons in the rat hippocampus , 2001, The Journal of comparative neurology.

[78]  N. P. Poolos,et al.  Reversed somatodendritic Ih gradient in a class of rat hippocampal neurons with pyramidal morphology , 2007, The Journal of physiology.

[79]  William R Holmes,et al.  Analysis and comparison of morphological reconstructions of hippocampal field CA1 pyramidal cells , 2005, Hippocampus.

[80]  P. Somogyi,et al.  GABAergic basket cells expressing cholecystokinin contain vesicular glutamate transporter type 3 (VGLUT3) in their synaptic terminals in hippocampus and isocortex of the rat , 2004, The European journal of neuroscience.

[81]  Ivan Soltesz,et al.  Neurogliaform cells in the molecular layer of the dentate gyrus as feed‐forward γ‐aminobutyric acidergic modulators of entorhinal–hippocampal interplay , 2011, The Journal of comparative neurology.

[82]  N Spruston,et al.  Specialized electrophysiological properties of anatomically identified neurons in the hilar region of the rat fascia dentata. , 1998, Journal of neurophysiology.

[83]  D. Amaral,et al.  A light and electron microscopic analysis of the mossy fibers of the rat dentate gyrus , 1986, The Journal of comparative neurology.

[84]  Christoph Schmidt-Hieber,et al.  Subthreshold Dendritic Signal Processing and Coincidence Detection in Dentate Gyrus Granule Cells , 2007, The Journal of Neuroscience.

[85]  T. Kosaka,et al.  Ultrastructural study of gap junctions between dendrites of parvalbumin-containing GABAergic neurons in various neocortical areas of the adult rat , 2003, Neuroscience.

[86]  P. Somogyi,et al.  Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo , 2003, Nature.

[87]  N. Tamamaki,et al.  Hippocampal pyramidal cells excite inhibitory neurons through a single release site , 1993, Nature.

[88]  Thomas Klausberger,et al.  Extrinsic and local glutamatergic inputs of the rat hippocampal CA1 area differentially innervate pyramidal cells and interneurons , 2012, Hippocampus.

[89]  T. Kosaka,et al.  Gap Junctions Linking the Dendritic Network of GABAergic Interneurons in the Hippocampus , 2000, The Journal of Neuroscience.

[90]  W M Cowan,et al.  Quantitative, three‐dimensional analysis of granule cell dendrites in the rat dentate gyrus , 1990, The Journal of comparative neurology.

[91]  G. Feng,et al.  Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP , 2000, Neuron.

[92]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[93]  P. Somogyi,et al.  Cholecystokinin‐immunoreactive cells form symmetrical synaptic contacts with pyramidal and nonpyramidal neurons in the hippocampus , 1985, The Journal of comparative neurology.

[94]  Yuan Gao,et al.  Semilunar Granule Cells: Glutamatergic Neurons in the Rat Dentate Gyrus with Axon Collaterals in the Inner Molecular Layer , 2007, The Journal of Neuroscience.

[95]  T. Freund,et al.  Precision and Variability in Postsynaptic Target Selection of Inhibitory Cells in the Hippocampal CA3 Region , 1993, The European journal of neuroscience.

[96]  J. Nyengaard,et al.  Design-based estimation of neuronal number and individual neuronal volume in the rat hippocampus , 2007, Journal of Neuroscience Methods.

[97]  L. Acsády,et al.  Different populations of vasoactive intestinal polypeptide-immunoreactive interneurons are specialized to control pyramidal cells or interneurons in the hippocampus , 1996, Neuroscience.

[98]  J. Bourassa,et al.  The behavior of mossy cells of the rat dentate gyrus during theta oscillationsin vivo , 1993, Neuroscience.

[99]  Henry Markram,et al.  Interneuron Diversity series: Molecular and genetic tools to study GABAergic interneuron diversity and function , 2004, Trends in Neurosciences.

[100]  M. Frotscher,et al.  The mossy cells of the fascia dentata: A comparative study of their fine structure and synaptic connections in rodents and primates , 1991, The Journal of comparative neurology.

[101]  D. Amaral,et al.  The development, ultrastructure and synaptic connections of the mossy cells of the dentate gyrus , 1985, Journal of neurocytology.

[102]  G. Miyoshi,et al.  Common Origins of Hippocampal Ivy and Nitric Oxide Synthase Expressing Neurogliaform Cells , 2010, The Journal of Neuroscience.

[103]  Attila I Gulyás,et al.  Convergence of excitatory and inhibitory inputs onto CCK‐containing basket cells in the CA1 area of the rat hippocampus , 2004, The European journal of neuroscience.

[104]  P. Somogyi,et al.  Synaptic effects of identified interneurons innervating both interneurons and pyramidal cells in the rat hippocampus , 1997, Neuroscience.

[105]  P. Somogyi,et al.  The hippocampal CA3 network: An in vivo intracellular labeling study , 1994, The Journal of comparative neurology.

[106]  Michael Brecht,et al.  Head-anchored whole-cell recordings in freely moving rats , 2009, Nature Protocols.

[107]  Raymond Dingledine,et al.  Control of Feedforward Dendritic Inhibition by NMDA Receptor-Dependent Spike Timing in Hippocampal Interneurons , 2002, The Journal of Neuroscience.

[108]  J. Deuchars,et al.  CA1 pyramid-pyramid connections in rat hippocampus in vitro: Dual intracellular recordings with biocytin filling , 1996, Neuroscience.

[109]  D. Amaral,et al.  Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat , 1990, The Journal of comparative neurology.

[110]  Volker Busskamp,et al.  Genetically timed, activity-sensor and rainbow transsynaptic viral tools , 2009, Nature Methods.

[111]  G. Buzsáki,et al.  Hippocampal CA1 interneurons: an in vivo intracellular labeling study , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[112]  Dennis A. Turner,et al.  Interneurons of the Dentate–Hilus Border of the Rat Dentate Gyrus: Morphological and Electrophysiological Heterogeneity , 1997, The Journal of Neuroscience.

[113]  O. Garaschuk,et al.  Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[114]  I. Soltesz,et al.  Ivy and Neurogliaform Interneurons Are a Major Target of μ-Opioid Receptor Modulation , 2011, The Journal of Neuroscience.

[115]  Alex M Thomson,et al.  Physiological and morphological diversity of immunocytochemically defined parvalbumin‐ and cholecystokinin‐positive interneurones in CA1 of the adult rat hippocampus , 2002, The Journal of comparative neurology.

[116]  J. Csicsvari,et al.  Reliability and State Dependence of Pyramidal Cell–Interneuron Synapses in the Hippocampus an Ensemble Approach in the Behaving Rat , 1998, Neuron.

[117]  Ivan Soltesz,et al.  Different transmitter transients underlie presynaptic cell type specificity of GABAA,slow and GABAA,fast , 2007, Proceedings of the National Academy of Sciences.

[118]  D. Amaral,et al.  A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus , 1995, The Journal of comparative neurology.

[119]  N T Carnevale,et al.  Comparative electrotonic analysis of three classes of rat hippocampal neurons. , 1997, Journal of neurophysiology.

[120]  Chunmei Zhao,et al.  Distinct Morphological Stages of Dentate Granule Neuron Maturation in the Adult Mouse Hippocampus , 2006, The Journal of Neuroscience.

[121]  T. Freund,et al.  Pyramidal cell dendrites are the primary targets of calbindin D28k‐immunoreactive interneurons in the hippocampus , 1996, Hippocampus.

[122]  T. Freund,et al.  Interneurons Containing Calretinin Are Specialized to Control Other Interneurons in the Rat Hippocampus , 1996, The Journal of Neuroscience.

[123]  Ivan Soltesz,et al.  Mossy cells in epilepsy: rigor mortis or vigor mortis? , 2002, Trends in Neurosciences.

[124]  P. Somogyi,et al.  Properties of horizontal axo‐axonic cells in stratum oriens of the hippocampal CA1 area of rats in vitro , 2004, Hippocampus.

[125]  C. Houser Interneurons of the dentate gyrus: an overview of cell types, terminal fields and neurochemical identity. , 2007, Progress in brain research.

[126]  Balazs Rozsa,et al.  Distance-Dependent Scaling of Calcium Transients Evoked by Backpropagating Spikes and Synaptic Activity in Dendrites of Hippocampal Interneurons , 2004, The Journal of Neuroscience.

[127]  I. Katona,et al.  Interneurons are the local targets of hippocampal inhibitory cells which project to the medial septum , 2003, The European journal of neuroscience.

[128]  Jozsef Csicsvari,et al.  Ivy Cells: A Population of Nitric-Oxide-Producing, Slow-Spiking GABAergic Neurons and Their Involvement in Hippocampal Network Activity , 2008, Neuron.

[129]  R. Chitwood,et al.  Passive electrotonic properties of rat hippocampal CA3 interneurones , 1999, The Journal of physiology.

[130]  KM Harris,et al.  Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation [published erratum appears in J Neurosci 1992 Aug;12(8):following table of contents] , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[131]  M. Frotscher,et al.  Proper layering is important for precisely timed activation of hippocampal mossy cells. , 2010, Cerebral cortex.

[132]  Phillip Larimer,et al.  Nonrandom Local Circuits in the Dentate Gyrus , 2008, The Journal of Neuroscience.

[133]  Peter Jonas,et al.  Distinct nonuniform cable properties optimize rapid and efficient activation of fast-spiking GABAergic interneurons , 2009, Proceedings of the National Academy of Sciences.

[134]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[135]  M. Frotscher,et al.  Rapid Signaling at Inhibitory Synapses in a Dentate Gyrus Interneuron Network , 2001, The Journal of Neuroscience.

[136]  T. Sejnowski,et al.  Synaptic plasticity in morphologically identified CA1 stratum radiatum interneurons and giant projection cells , 2000, Hippocampus.

[137]  T. Kosaka The axon initial segment as a synaptic site: Ultrastructure and synaptology of the initial segment of the pyramidal cell in the rat hippocampus (CA3 region) , 1980, Journal of neurocytology.

[138]  Ken Mackie,et al.  Presynaptically Located CB1 Cannabinoid Receptors Regulate GABA Release from Axon Terminals of Specific Hippocampal Interneurons , 1999, The Journal of Neuroscience.

[139]  T. Kosaka,et al.  GABAergic neurons containing somatostatin-like immunoreactivity in the rat hippocampus and dentate gyrus , 2004, Experimental Brain Research.

[140]  S. Siegelbaum,et al.  Strong CA2 Pyramidal Neuron Synapses Define a Powerful Disynaptic Cortico-Hippocampal Loop , 2010, Neuron.

[141]  P. Schwartzkroin,et al.  Axon arbors and synaptic connections of hippocampal mossy cells in the rat in vivo , 1996, The Journal of comparative neurology.

[142]  Alex M Thomson,et al.  Characterization of Neurons in the CA2 Subfield of the Adult Rat Hippocampus , 2007, The Journal of Neuroscience.

[143]  D. Kullmann,et al.  Synaptically released glutamate reduces gamma-aminobutyric acid (GABA)ergic inhibition in the hippocampus via kainate receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[144]  H. Scharfman Electrophysiological diversity of pyramidal‐shaped neurons at the granule cell layer/hilus border of the rat dentate gyrus recorded in vitro , 1995, Hippocampus.

[145]  J. Rehfeld,et al.  Distribution of Wfs1 protein in the central nervous system of the mouse and its relation to clinical symptoms of the Wolfram syndrome , 2008, The Journal of comparative neurology.

[146]  P. Somogyi,et al.  Axonal and dendritic arborization of an intracellularly labeled chandelier cell in the CA1 region of rat hippocampus , 2004, Experimental Brain Research.

[147]  N. Tamamaki,et al.  Complete Axon Arborization of a Single CA3 Pyramidal Cell in the Rat Hippocampus, and its Relationship With Postsynaptic Parvalbumin‐containing Interneurons , 1993, The European journal of neuroscience.

[148]  P. Somogyi,et al.  Cholecystokinin-immunopositive basket and Schaffer collateral-associated interneurones target different domains of pyramidal cells in the CA1 area of the rat hippocampus , 2002, Neuroscience.

[149]  P. Somogyi,et al.  Immunoreactivity for the GABAA receptor alpha1 subunit, somatostatin and Connexin36 distinguishes axoaxonic, basket, and bistratified interneurons of the rat hippocampus. , 2007, Cerebral cortex.

[150]  G Buzsáki,et al.  GABAergic Cells Are the Major Postsynaptic Targets of Mossy Fibers in the Rat Hippocampus , 1998, The Journal of Neuroscience.

[151]  P. Jonas,et al.  Distal initiation and active propagation of action potentials in interneuron dendrites. , 2000, Science.

[152]  P. Somogyi,et al.  High level of mGluR7 in the presynaptic active zones of select populations of GABAergic terminals innervating interneurons in the rat hippocampus , 2003, The European journal of neuroscience.

[153]  S. Chamberland,et al.  Frontiers in Cellular Neuroscience Cellular Neuroscience , 2022 .

[154]  R. S. Sloviter Calcium‐binding protein (calbindin‐D28k) and parvalbumin immunocytochemistry: Localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity , 1989, The Journal of comparative neurology.

[155]  Phiroz E. Tarapore,et al.  Overexpression of calbindin D28k in dentate gyrus granule cells alters mossy fiber presynaptic function and impairs hippocampal‐dependent memory , 2004, Hippocampus.

[156]  G. Tamás,et al.  Identified Sources and Targets of Slow Inhibition in the Neocortex , 2003, Science.

[157]  G. Buzsáki,et al.  Hippocampal CA1 pyramidal cells form functionally distinct sublayers , 2011, Nature Neuroscience.

[158]  H. Scharfman The CA3 "backprojection" to the dentate gyrus. , 2007, Progress in brain research.

[159]  P. Somogyi,et al.  Immunolocalization of metabotropic glutamate receptor 1α (mGluR1α) in distinct classes of interneuron in the CA1 region of the rat hippocampus , 2004, Hippocampus.

[160]  P. Somogyi,et al.  Defined types of cortical interneurone structure space and spike timing in the hippocampus , 2005, The Journal of physiology.

[161]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[162]  Peter Somogyi,et al.  Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites , 1994, Nature.

[163]  P. Somogyi,et al.  Physiological properties of anatomically identified basket and bistratified cells in the CA1 area of the rat hippocampus in vitro , 1996, Hippocampus.

[164]  Miles A. Whittington,et al.  Impaired Electrical Signaling Disrupts Gamma Frequency Oscillations in Connexin 36-Deficient Mice , 2001, Neuron.

[165]  G. Buzsáki,et al.  Inhibitory CA1-CA3-hilar region feedback in the hippocampus. , 1994, Science.

[166]  H. Katsumaru,et al.  Immunocytochemical study of GABAergic neurons containing the calcium-binding protein parvalbumin in the rat hippocampus , 2004, Experimental Brain Research.

[167]  T. Kosaka,et al.  Three-dimensional morphometrical study of dendritic spines of the granule cell in the rat dentate gyrus with HVEM stereo images. , 1989, Journal of electron microscopy technique.

[168]  L. Acsády,et al.  Postsynaptic targets of somatostatin-immunoreactive interneurons in the rat hippocampus , 1999, Neuroscience.

[169]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[170]  J. Lacaille,et al.  Interneuron Diversity series: Hippocampal interneuron classifications – making things as simple as possible, not simpler , 2003, Trends in Neurosciences.

[171]  T. Freund,et al.  Recurrent mossy fibers preferentially innervate parvalbumin‐immunoreactive interneurons in the granule cell layer of the rat dentate gyrus , 2000, Neuroreport.

[172]  L. Acsády,et al.  Distinct interneuron types express m2 muscarinic receptor immunoreactivity on their dendrites or axon terminals in the hippocampus , 1997, Neuroscience.

[173]  T. Freund,et al.  Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells , 2001, Neuroscience.

[174]  P. Somogyi,et al.  Synaptic target selectivity and input of GABAergic basket and bistratified interneurons in the CA1 area of the rat hippocampus , 1996, Hippocampus.

[175]  J. García-Verdugo,et al.  Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus , 2004, The Journal of comparative neurology.

[176]  A. Thomson,et al.  Facilitating pyramid to horizontal oriens‐alveus interneurone inputs: dual intracellular recordings in slices of rat hippocampus , 1998, The Journal of physiology.

[177]  D. Henze,et al.  Dendritic morphology and its effects on the amplitude and rise‐time of synaptic signals in hippocampal CA3 pyramidal cells , 1996, The Journal of comparative neurology.

[178]  G Buzsáki,et al.  Interneurons in the Hippocampal Dentate Gyrus: an In Vivo intracellular Study , 1997, The European journal of neuroscience.

[179]  Robert J. Morgan,et al.  Regulation of Fast-Spiking Basket Cell Synapses by the Chloride Channel ClC–2 , 2010, Nature Neuroscience.

[180]  M. Frotscher,et al.  The GABAB1a Isoform Mediates Heterosynaptic Depression at Hippocampal Mossy Fiber Synapses , 2009, The Journal of Neuroscience.

[181]  D. Thurbon,et al.  Electrotonic profiles of interneurons in stratum pyramidale of the CA1 region of rat hippocampus. , 1994, Journal of neurophysiology.

[182]  Michael Frotscher,et al.  Structural Determinants of Transmission at Large Hippocampal Mossy Fiber Synapses , 2007, The Journal of Neuroscience.

[183]  Gerd Kempermann,et al.  Milestones of neuronal development in the adult hippocampus , 2004, Trends in Neurosciences.

[184]  P. Somogyi,et al.  Unitary IPSPs evoked by interneurons at the stratum radiatum‐stratum lacunosum‐moleculare border in the CA1 area of the rat hippocampus in vitro , 1998, The Journal of physiology.

[185]  Arnd Roth,et al.  Submillisecond AMPA Receptor-Mediated Signaling at a Principal Neuron–Interneuron Synapse , 1997, Neuron.

[186]  B. Alger,et al.  Synaptic Cross Talk between Perisomatic-Targeting Interneuron Classes Expressing Cholecystokinin and Parvalbumin in Hippocampus , 2009, The Journal of Neuroscience.

[187]  Rosa Cossart,et al.  Synaptic Kainate Receptors Tune Oriens-Lacunosum Moleculare Interneurons to Operate at Theta Frequency , 2007, The Journal of Neuroscience.

[188]  D. Amaral A golgi study of cell types in the hilar region of the hippocampus in the rat , 1978, The Journal of comparative neurology.

[189]  L. Acsády,et al.  Correlated morphological and neurochemical features identify different subsets of vasoactive intestinal polypeptide-immunoreactive interneurons in rat hippocampus , 1996, Neuroscience.

[190]  I. Katona,et al.  In Vivo Labeling of Parvalbumin-Positive Interneurons and Analysis of Electrical Coupling in Identified Neurons , 2002, The Journal of Neuroscience.

[191]  K. Tóth,et al.  Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons , 1998, Nature Neuroscience.