Truncated Hierarchical Loop Subdivision Surfaces and application in isogeometric analysis

Subdivision Surface provides an efficient way to represent free-form surfaces with arbitrary topology. Loop subdivision is a subdivision scheme for triangular meshes, which is C2 continuous except at a finite number of extraordinary vertices with G1 continuous. In this paper we propose the Truncated Hierarchical Loop Subdivision Surface (THLSS), which generalizes truncated hierarchical B-splines to arbitrary topological triangular meshes. THLSS basis functions are linearly independent, form a partition of unity, and are locally refinable. THLSS also preserves the geometry during adaptive h-refinement and thus inherits the surface continuity of Loop subdivision surface. Adaptive isogeometric analysis is performed with the THLSS basis functions on several complex models with extraordinary vertices to show the potential application of THLSS.

[1]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[2]  Jiansong Deng,et al.  Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..

[3]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[4]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[5]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[6]  Jiansong Deng,et al.  Dimensions of spline spaces over T-meshes , 2006 .

[7]  Jiansong Deng,et al.  Modified T-splines , 2013, Comput. Aided Geom. Des..

[8]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[9]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[10]  Trond Kvamsdal,et al.  Isogeometric analysis using LR B-splines , 2014 .

[11]  Jörg Peters,et al.  On the Local Linear Independence of Generalized Subdivision Functions , 2006, SIAM J. Numer. Anal..

[12]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[13]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[14]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[15]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[16]  Hendrik Speleers,et al.  Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems , 2012 .

[17]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[18]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[19]  Guoliang Xu,et al.  Isogeometric analysis based on extended Loop's subdivision , 2015, J. Comput. Phys..

[20]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[21]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[22]  Jiansong Deng,et al.  Hierarchical B-splines on regular triangular partitions , 2014, Graph. Model..

[23]  Jiansong Deng,et al.  A new basis for PHT-splines , 2015, Graph. Model..

[24]  Bert Jüttler,et al.  Adaptively refined multilevel spline spaces from generating systems , 2014, Comput. Aided Geom. Des..

[25]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[26]  Thomas J. R. Hughes,et al.  Extended Truncated Hierarchical Catmull–Clark Subdivision , 2016 .

[27]  Hendrik Speleers,et al.  Quasi-hierarchical Powell-Sabin B-splines , 2009, Comput. Aided Geom. Des..

[28]  Thomas J. R. Hughes,et al.  On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..

[29]  Thomas J. R. Hughes,et al.  Truncated hierarchical Catmull–Clark subdivision with local refinement , 2015 .