Truncated Hierarchical Loop Subdivision Surfaces and application in isogeometric analysis
暂无分享,去创建一个
Jiansong Deng | Falai Chen | Xin Li | Hongmei Kang | Xin Li | Falai Chen | Jiansong Deng | Hongmei Kang
[1] Alessandro Reali,et al. Isogeometric Analysis of Structural Vibrations , 2006 .
[2] Jiansong Deng,et al. Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..
[3] David R. Forsey,et al. Hierarchical B-spline refinement , 1988, SIGGRAPH.
[4] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[5] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[6] Jiansong Deng,et al. Dimensions of spline spaces over T-meshes , 2006 .
[7] Jiansong Deng,et al. Modified T-splines , 2013, Comput. Aided Geom. Des..
[8] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[9] M. Ortiz,et al. Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .
[10] Trond Kvamsdal,et al. Isogeometric analysis using LR B-splines , 2014 .
[11] Jörg Peters,et al. On the Local Linear Independence of Generalized Subdivision Functions , 2006, SIAM J. Numer. Anal..
[12] Nicholas S. North,et al. T-spline simplification and local refinement , 2004, SIGGRAPH 2004.
[13] T. Hughes,et al. Local refinement of analysis-suitable T-splines , 2012 .
[14] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .
[15] John A. Evans,et al. Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .
[16] Hendrik Speleers,et al. Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems , 2012 .
[17] Jos Stam,et al. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.
[18] Tom Lyche,et al. Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..
[19] Guoliang Xu,et al. Isogeometric analysis based on extended Loop's subdivision , 2015, J. Comput. Phys..
[20] Charles T. Loop,et al. Smooth Subdivision Surfaces Based on Triangles , 1987 .
[21] Thomas J. R. Hughes,et al. n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .
[22] Jiansong Deng,et al. Hierarchical B-splines on regular triangular partitions , 2014, Graph. Model..
[23] Jiansong Deng,et al. A new basis for PHT-splines , 2015, Graph. Model..
[24] Bert Jüttler,et al. Adaptively refined multilevel spline spaces from generating systems , 2014, Comput. Aided Geom. Des..
[25] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[26] Thomas J. R. Hughes,et al. Extended Truncated Hierarchical Catmull–Clark Subdivision , 2016 .
[27] Hendrik Speleers,et al. Quasi-hierarchical Powell-Sabin B-splines , 2009, Comput. Aided Geom. Des..
[28] Thomas J. R. Hughes,et al. On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..
[29] Thomas J. R. Hughes,et al. Truncated hierarchical Catmull–Clark subdivision with local refinement , 2015 .