On random walks and entropy in diffusion‐weighted magnetic resonance imaging studies of neural tissue

In diffusion‐weighted MRI studies of neural tissue, the classical model assumes the statistical mechanics of Brownian motion and predicts a monoexponential signal decay. However, there have been numerous reports of signal decays that are not monoexponential, particularly in the white matter.

[1]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[2]  David S. Martin,et al.  Diffusion and Perfusion Magnetic Resonance Imaging: Applications to Functional MRI , 1996 .

[3]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[4]  R. Mazo,et al.  Brownian Motion: Fluctuations, Dynamics, and Applications , 2002 .

[5]  Muhammad Sahimi,et al.  Diffusion in disordered media with long-range correlations: anomalous, Fickian, and superdiffusive transport and log-periodic oscillations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Igor M. Sokolov,et al.  Physics of Fractal Operators , 2003 .

[7]  J. Hyde,et al.  Characterization of continuously distributed cortical water diffusion rates with a stretched‐exponential model , 2003, Magnetic resonance in medicine.

[8]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[9]  A. Yli-Hankala,et al.  Description of the Entropy™ algorithm as applied in the Datex‐Ohmeda S/5™ Entropy Module , 2004, Acta anaesthesiologica Scandinavica.

[10]  Francesco Mainardi,et al.  Discrete and Continuous Random Walk Models for Space-Time Fractional Diffusion , 2004 .

[11]  M. Combescure Hamiltonian Chaos and Fractional Dynamics , 2005 .

[12]  Baba C. Vemuri,et al.  Characterization of Anomalous Diffusion from MR Signal may be a New Probe to Tissue Microstructure , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[13]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[14]  A. M. Mathai,et al.  Fractional Reaction-Diffusion Equations , 2006, math/0604473.

[15]  Xiaohong Joe Zhou,et al.  Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. , 2008, Journal of magnetic resonance.

[16]  T. Barrick,et al.  From diffusion‐weighted MRI to anomalous diffusion imaging , 2008, Magnetic resonance in medicine.

[17]  I. Sokolov,et al.  Anomalous transport : foundations and applications , 2008 .

[18]  Joong Hee Kim,et al.  Axonal injury detected by in vivo diffusion tensor imaging correlates with neurological disability in a mouse model of multiple sclerosis , 2008, NMR in biomedicine.

[19]  M. Meerschaert,et al.  Fractional conservation of mass , 2008 .

[20]  J. H. Cushman,et al.  Anomalous diffusion as modeled by a nonstationary extension of Brownian motion. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  T. Mareci,et al.  Early MR diffusion and relaxation changes in the parahippocampal gyrus precede the onset of spontaneous seizures in an animal model of chronic limbic epilepsy , 2010, Experimental Neurology.

[22]  Xiaohong Joe Zhou,et al.  Studies of anomalous diffusion in the human brain using fractional order calculus , 2010, Magnetic resonance in medicine.

[23]  Arak M. Mathai,et al.  Mittag-Leffler Functions and Their Applications , 2009, J. Appl. Math..

[24]  J. Frank,et al.  The contribution of gliosis to diffusion tensor anisotropy and tractography following traumatic brain injury: validation in the rat using Fourier analysis of stained tissue sections. , 2011, Brain : a journal of neurology.

[25]  M. Meerschaert,et al.  Stochastic Models for Fractional Calculus , 2011 .

[26]  E Macaluso,et al.  Anisotropic anomalous diffusion assessed in the human brain by scalar invariant indices , 2010, Magnetic resonance in medicine.

[27]  C. Cametti,et al.  Spatio-temporal anomalous diffusion in heterogeneous media by nuclear magnetic resonance. , 2011, The Journal of chemical physics.

[28]  Richard L. Magin,et al.  Entropy and Information in a Fractional Order Model of Anomalous Diffusion , 2012 .

[29]  W. Denk,et al.  Staining and embedding the whole mouse brain for electron microscopy , 2012, Nature Methods.

[30]  Matthew D. Budde,et al.  Examining brain microstructure using structure tensor analysis of histological sections , 2012, NeuroImage.

[31]  Cheng Guan Koay,et al.  Temporal scaling characteristics of diffusion as a new MRI contrast: Findings in rat hippocampus , 2012, NeuroImage.

[32]  T. Barrick,et al.  Two‐step anomalous diffusion tensor imaging , 2012, NMR in biomedicine.

[33]  Kenneth A. Loparo,et al.  Entropy-Based Measures for Quantifying Sleep-Stage Transition Dynamics: Relationship to Sleep Fragmentation and Daytime Sleepiness , 2012, IEEE Transactions on Biomedical Engineering.