Independent adaptation mechanisms for numerosity and size perception provide evidence against a common sense of magnitude

[1]  S. Dehaene,et al.  Asymmetrical interference between number and item size perception provides evidence for a domain specific impairment in dyscalculia , 2018, bioRxiv.

[2]  Stanislas Dehaene,et al.  Asymmetrical interference between number and item size perception provide evidence for a domain specific impairment in dyscalculia , 2018, bioRxiv.

[3]  Darko Odic Children's intuitive sense of number develops independently of their perception of area, density, length, and time. , 2018, Developmental science.

[4]  Roberto Arrighi,et al.  Spatial but Not Temporal Numerosity Thresholds Correlate With Formal Math Skills in Children , 2017, Developmental psychology.

[5]  Stanislas Dehaene,et al.  Discriminability of numerosity-evoked fMRI activity patterns in human intra-parietal cortex reflects behavioral numerical acuity , 2017, Cortex.

[6]  D. Ansari,et al.  Accumulation of non‐numerical evidence during nonsymbolic number processing in the brain: An fMRI study , 2017, Human brain mapping.

[7]  D. Ansari,et al.  Beyond comparison: The influence of physical size on number estimation is modulated by notation, range and spatial arrangement. , 2017, Acta psychologica.

[8]  Yarden Gliksman,et al.  Size Perception and the Foundation of Numerical Processing , 2017 .

[9]  Julian Jara-Ettinger,et al.  Universal and uniquely human factors in spontaneous number perception , 2017, Nature Communications.

[10]  David C. Burr,et al.  Effects of adaptation on numerosity decoding in the human brain , 2016, NeuroImage.

[11]  Anders M. Dale,et al.  Global Visual Motion Sensitivity: Associations with Parietal Area and Children's Mathematical Cognition , 2016, Journal of Cognitive Neuroscience.

[12]  S. Dumoulin,et al.  A network of topographic numerosity maps in human association cortex , 2016, Nature Human Behaviour.

[13]  Eckart Zimmermann,et al.  Numerosity perception after size adaptation , 2016, Scientific Reports.

[14]  Daniel Ansari,et al.  Probing the nature of deficits in the 'Approximate Number System' in children with persistent Developmental Dyscalculia. , 2016, Developmental science.

[15]  Guido Marco Cicchini,et al.  Spontaneous perception of numerosity in humans , 2016, Nature Communications.

[16]  A. Henik,et al.  The contribution of fish studies to the “number sense” debate , 2016, Behavioral and Brain Sciences.

[17]  D. Burr,et al.  A shared numerical representation for action and perception , 2016, eLife.

[18]  Elisa Castaldi,et al.  Numerosity but not texture-density discrimination correlates with math ability in children. , 2016, Developmental psychology.

[19]  David Aagten-Murphy,et al.  Adaptation to numerosity requires only brief exposures, and is determined by number of events, not exposure duration , 2016, Journal of vision.

[20]  Lucia Melloni,et al.  Motion along the mental number line reveals shared representations for numerosity and space , 2016, eLife.

[21]  Ariel Starr,et al.  Developmental Continuity in the Link Between Sensitivity to Numerosity and Physical Size , 2015, J. Numer. Cogn..

[22]  S. Dumoulin,et al.  Topographic representations of object size and relationships with numerosity reveal generalized quantity processing in human parietal cortex , 2015, Proceedings of the National Academy of Sciences.

[23]  Alexandra A. Cleland,et al.  The role of numerical and non-numerical cues in nonsymbolic number processing: Evidence from the line bisection task , 2015, Quarterly journal of experimental psychology.

[24]  V. Walsh,et al.  Binding space and time through action , 2015, Proceedings of the Royal Society B: Biological Sciences.

[25]  Adolf Wohlgemuth,et al.  On the after-effect of seen movement , 2015 .

[26]  David C. Burr,et al.  A generalized sense of number , 2014, Proceedings of the Royal Society B: Biological Sciences.

[27]  Fruzsina Soltész,et al.  Neural adaptation to non-symbolic number and visual shape: An electrophysiological study , 2014, Biological Psychology.

[28]  Bert Reynvoet,et al.  The Neural Mechanism Underlying Ordinal Numerosity Processing , 2014, Journal of Cognitive Neuroscience.

[29]  M. Morrone,et al.  Blood Oxygen Level-Dependent Activation of the Primary Visual Cortex Predicts Size Adaptation Illusion , 2013, The Journal of Neuroscience.

[30]  Amy Devine,et al.  Visual stimulus parameters seriously compromise the measurement of approximate number system acuity and comparative effects between adults and children , 2013, Front. Psychol..

[31]  C. Agrillo,et al.  Individual differences in non-symbolic numerical abilities predict mathematical achievements but contradict ATOM , 2013, Behavioral and Brain Functions.

[32]  Neil Marlow,et al.  Individual Differences in Inhibitory Control, Not Non-Verbal Number Acuity, Correlate with Mathematics Achievement , 2013, PloS one.

[33]  S. Dehaene,et al.  Objects, numbers, fingers, space: clustering of ventral and dorsal functions in young children and adults. , 2013, Developmental science.

[34]  Pierre Pica,et al.  Education Enhances the Acuity of the Nonverbal Approximate Number System , 2013, Psychological science.

[35]  Thierry Pozzo,et al.  Time perception of visual motion is tuned by the motor representation of human actions , 2013, Scientific Reports.

[36]  Stella F. Lourenco,et al.  Nonsymbolic number and cumulative area representations contribute shared and unique variance to symbolic math competence , 2012, Proceedings of the National Academy of Sciences.

[37]  E. Wagenmakers,et al.  A default Bayesian hypothesis test for correlations and partial correlations , 2012, Psychonomic bulletin & review.

[38]  D. Burr,et al.  Reduced perceptual sensitivity for biological motion in paraplegia patients , 2011, Current Biology.

[39]  F. Kingdom,et al.  A common visual metric for approximate number and density , 2011, Proceedings of the National Academy of Sciences.

[40]  Titia Gebuis,et al.  False Approximations of the Approximate Number System? , 2011, PloS one.

[41]  D. Burr,et al.  Motion psychophysics: 1985–2010 , 2011, Vision Research.

[42]  M. Webster Adaptation and visual coding. , 2011, Journal of vision.

[43]  Manuela Piazza,et al.  Neurocognitive start-up tools for symbolic number representations , 2010, Trends in Cognitive Sciences.

[44]  V. Walsh,et al.  The parietal cortex and the representation of time, space, number and other magnitudes , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[45]  Dorit Wenke,et al.  How voluntary actions modulate time perception , 2009, Experimental Brain Research.

[46]  D. Burr,et al.  Visual aftereffects , 2009, Current Biology.

[47]  Justin Halberda,et al.  Individual differences in non-verbal number acuity correlate with maths achievement , 2008, Nature.

[48]  Roi Cohen Kadosh,et al.  Are numbers special? An overview of chronometric, neuroimaging, developmental and comparative studies of magnitude representation , 2008, Progress in Neurobiology.

[49]  D. Burr,et al.  A Visual Sense of Number , 2007, Current Biology.

[50]  Sheng He,et al.  Larger stimuli are judged to last longer. , 2007, Journal of vision.

[51]  A. Kohn Visual adaptation: physiology, mechanisms, and functional benefits. , 2007, Journal of neurophysiology.

[52]  Rochel Gelman,et al.  Sometimes area counts more than number , 2006, Proceedings of the National Academy of Sciences.

[53]  M Concetta Morrone,et al.  Saccadic eye movements cause compression of time as well as space , 2005, Nature Neuroscience.

[54]  Michael Andres,et al.  Number magnitude and grip aperture interaction , 2004, Neuroreport.

[55]  Vincent Walsh A theory of magnitude: common cortical metrics of time, space and quantity , 2003, Trends in Cognitive Sciences.

[56]  N Ginsburg,et al.  Perceived Numerosity as a Function of Item Size , 1988, Perceptual and motor skills.

[57]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[58]  D. Burr,et al.  Visual processing of motion , 1986, Trends in Neurosciences.

[59]  A. Watson,et al.  Quest: A Bayesian adaptive psychometric method , 1983, Perception & psychophysics.

[60]  R. Addams LI. An account of a peculiar optical phænomenon seen after having looked at a moving body , 1834 .

[61]  M. Webster Visual Adaptation. , 2015, Annual review of vision science.

[62]  Ann Dowker,et al.  The Oxford Handbook of Numerical Cognition , 2015 .

[63]  Nicole M. McNeil,et al.  ANS acuity and mathematics ability in preschoolers from low-income homes: contributions of inhibitory control. , 2013, Developmental science.

[64]  Bert Reynvoet,et al.  The interplay between nonsymbolic number and its continuous visual properties. , 2012, Journal of experimental psychology. General.

[65]  J. Stroop Studies of interference in serial verbal reactions. , 1992 .