Characterization of the human visual V6 complex by functional magnetic resonance imaging

Magnetoencephalography of a visual area along the human parieto‐occipital sulcus suggested that this region represents the human homologue of the monkey visual area V6 complex (visual area V6/visuomotor area V6A) involved in the integration of visual and somatomotor information. We used functional magnetic resonance imaging at 2.0 T and 2 × 2 × 3 mm3 resolution (16 sections) to characterize visual areas along the parieto‐occipital sulcus in five healthy human subjects. Paradigms comprised a full‐field checkerboard stimulation, a full‐field luminance flicker as well as a foveal and peripheral luminance flicker using both a direct and differential design for comparing functional states. Along the parieto‐occipital sulcus, and in contrast to primary visual areas, luminance stimulation evoked much larger activation volumes than checkerboard stimulation. Moreover, based on anatomic landmarks, luminance stimulation identified two functionally distinct regions of parieto‐occipital sulcus activations: an inferior part (supposedly visual area V6) and a superior portion (supposedly visuomotor area V6A). With these assignments, foveal vs. peripheral luminance stimulation revealed a weaker foveal overrepresentation in visual area V6/visuomotor area V6A than in early visual areas, and only a mild tendency for a retinotopic organization in visual area V6. Further analyses of the functional coding of the human visual area V6 complex require functional magnetic resonance imaging at even higher spatial resolution.

[1]  Ellen Covey,et al.  Cortical Visual Areas of the Macaque: Possible Substrates for Pattern Recognition Mechanisms , 1985 .

[2]  D. Hubel,et al.  Do the relative mapping densities of the magno- and parvocellular systems vary with eccentricity? , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  C. Gross,et al.  Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: A dual tracer study , 1988, The Journal of comparative neurology.

[4]  M. Perenin,et al.  Optic ataxia: a specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects. , 1988, Brain : a journal of neurology.

[5]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[6]  C. Galletti,et al.  Functional Properties of Neurons in the Anterior Bank of the Parieto‐occipital Sulcus of the Macaque Monkey , 1991, The European journal of neuroscience.

[7]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[8]  P. Roland,et al.  Fields in human motor areas involved in preparation for reaching, actual reaching, and visuomotor learning: a positron emission tomography study , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  S. Zeki,et al.  The cerebral activity related to the visual perception of forward motion in depth. , 1994, Brain : a journal of neurology.

[10]  G. Orban,et al.  Many areas in the human brain respond to visual motion. , 1994, Journal of neurophysiology.

[11]  V. Virsu,et al.  Visual stability during eyeblinks , 1994, Nature.

[12]  Leslie G. Ungerleider,et al.  ‘What’ and ‘where’ in the human brain , 1994, Current Opinion in Neurobiology.

[13]  Jens Frahm,et al.  On the use of temporal correlation coefficients for magnetic resonance mapping of functional brain activation: Individualized thresholds and spatial response delineation , 1995, Int. J. Imaging Syst. Technol..

[14]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[15]  K Cheng,et al.  Human cortical regions activated by wide-field visual motion: an H2(15)O PET study. , 1995, Journal of neurophysiology.

[16]  C. Galletti,et al.  Eye Position Influence on the Parieto‐occipital Area PO (V6) of the Macaque Monkey , 1995, The European journal of neuroscience.

[17]  D. Boussaoud,et al.  Direct visual pathways for reaching movements in the macaque monkey , 1995, Neuroreport.

[18]  C. Galletti,et al.  Functional Demarcation of a Border Between Areas V6 and V6A in the Superior Parietal Gyrus of the Macaque Monkey , 1996, The European journal of neuroscience.

[19]  Scott T. Grafton,et al.  Functional anatomy of pointing and grasping in humans. , 1996, Cerebral cortex.

[20]  V. Jousmäki,et al.  Magnetic source imaging during a visually guided task , 1996, Neuroreport.

[21]  C. Galletti,et al.  Arm Movement‐related Neurons in the Visual Area V6A of the Macaque Superior Parietal Lobule , 1997, The European journal of neuroscience.

[22]  R. Hari,et al.  Human cortical oscillations: a neuromagnetic view through the skull , 1997, Trends in Neurosciences.

[23]  C D Frith,et al.  Space-based and object-based visual attention: shared and specific neural domains. , 1997, Brain : a journal of neurology.

[24]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[25]  G. Rizzolatti,et al.  Parietal cortex: from sight to action , 1997, Current Opinion in Neurobiology.

[26]  A. B. Mayer,et al.  Visuomotor transformations: early cortical mechanisms of reaching , 1998, Current Opinion in Neurobiology.

[27]  C. Svarer,et al.  Parieto-occipital cortex activation during self-generated eye movements in the dark. , 1998, Brain : a journal of neurology.

[28]  S. Zeki,et al.  A visuo‐somatomotor pathway through superior parietal cortex in the macaque monkey: cortical connections of areas V6 and V6A , 1998, The European journal of neuroscience.

[29]  T. Brandt,et al.  Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. , 1998, Brain : a journal of neurology.

[30]  C Galletti,et al.  Superior area 6 afferents from the superior parietal lobule in the macaque monkey , 1998, The Journal of comparative neurology.

[31]  J Frahm,et al.  Stimulus dependence of oxygenation‐sensitive MRI responses to sustained visual activation , 1998, NMR in biomedicine.

[32]  R. Hari,et al.  Activation of the human occipital and parietal cortex by pattern and luminance stimuli: neuromagnetic measurements. , 1998, Cerebral cortex.

[33]  C. Galletti,et al.  Brain location and visual topography of cortical area V6A in the macaque monkey , 1999, The European journal of neuroscience.

[34]  R. Hari,et al.  Human parieto–occipital visual cortex: lack of retinotopy and foveal magnification , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[35]  H. H. Chung,et al.  Dynamic representation of eye position in the parieto-occipital sulcus. , 1999, Journal of neurophysiology.

[36]  R. Hari,et al.  Stronger occipital cortical activation to lower than upper visual field stimuli Neuromagnetic recordings , 1999, Experimental Brain Research.

[37]  C. Galletti,et al.  The cortical visual area V6: brain location and visual topography , 1999, The European journal of neuroscience.

[38]  J. Frahm,et al.  Does stimulus quality affect the physiologic MRI responses to brief visual activation? , 1999, Neuroreport.

[39]  A. B. Mayer,et al.  Early coding of reaching: frontal and parietal association connections of parieto‐occipital cortex , 1999, The European journal of neuroscience.

[40]  P. Dechent,et al.  Direct mapping of ocular dominance columns in human primary visual cortex , 2000, Neuroreport.

[41]  C. Blakemore,et al.  Functional imaging of brain areas involved in the processing of coherent and incoherent wide field-of-view visual motion , 2000, Experimental Brain Research.

[42]  F. Lacquaniti,et al.  Early coding of reaching in the parietooccipital cortex. , 2000, Journal of neurophysiology.

[43]  A. Paans,et al.  Brain Activation Related to the Representations of External Space and Body Scheme in Visuomotor Control , 2001, NeuroImage.

[44]  F. Lacquaniti,et al.  Eye-hand coordination during reaching. I. Anatomical relationships between parietal and frontal cortex. , 2001, Cerebral cortex.

[45]  A. Ioannides,et al.  Early (N70m) Neuromagnetic Signal Topography and Striate and Extrastriate Generators Following Pattern Onset Quadrant Stimulation , 2001, NeuroImage.

[46]  Michela Gamberini,et al.  ‘Arm‐reaching’ neurons in the parietal area V6A of the macaque monkey , 2001, The European journal of neuroscience.

[47]  R. Haaxma,et al.  Opsoclonus-induced occipital deactivation with a region-specific distribution , 2001, Vision Research.

[48]  R Caminiti,et al.  Eye-hand coordination during reaching. II. An analysis of the relationships between visuomanual signals in parietal cortex and parieto-frontal association projections. , 2001, Cerebral cortex.

[49]  R. Hari,et al.  Coinciding early activation of the human primary visual cortex and anteromedial cuneus , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[50]  C. Galletti,et al.  The cortical connections of area V6: an occipito‐parietal network processing visual information , 2001, The European journal of neuroscience.

[51]  Richard S. Frackowiak,et al.  Neural Correlates of Visual-Motion Perception as Object- or Self-motion , 2002, NeuroImage.

[52]  C. Galletti,et al.  Effects of lesions to area V6A in monkeys , 2002, Experimental Brain Research.

[53]  Umberto Castiello,et al.  Posterior parietal cortex control of reach‐to‐grasp movements in humans , 2002, The European journal of neuroscience.

[54]  S. Dehaene,et al.  Topographical Layout of Hand, Eye, Calculation, and Language-Related Areas in the Human Parietal Lobe , 2002, Neuron.

[55]  T. Kimura,et al.  Mental navigation in humans is processed in the anterior bank of the parieto-occipital sulcus , 2002, Neuroscience Letters.

[56]  Jens Frahm,et al.  Functional somatotopy of finger representations in human primary motor cortex , 2003, Human brain mapping.

[57]  P. P. Battaglini,et al.  Parietal neurons encoding spatial locations in craniotopic coordinates , 2004, Experimental Brain Research.