Conceptual Spaces for Computer Vision Representations

A framework for high-level representations in computer vision architectures is described. The framework is based on the notion of conceptual space. This approach allows us to define a conceptual semantics for the symbolic representations of the vision system. In this way, the semantics of the symbols can be grounded to the data coming from the sensors. In addition, the proposed approach generalizes the most popular frameworks adopted in computer vision.

[1]  Ronald C. Arkin,et al.  Integrating behavioral, perceptual, and world knowledge in reactive navigation , 1990, Robotics Auton. Syst..

[2]  Ruzena Bajcsy,et al.  Volumetric segmentation of range images of 3D objects using superquadric models , 1993 .

[3]  Michael E. Mortenson Geometric modeling (2nd ed.) , 1997 .

[4]  Edoardo Ardizzone,et al.  Integrating Subsymbolic and Symbolic Processing in Artificial Vision , 1992 .

[5]  A. Chella,et al.  A conceptual representation of the actions of an autonomous robot , 1999, 1999 Third European Workshop on Advanced Mobile Robots (Eurobot'99). Proceedings (Cat. No.99EX355).

[6]  Richard A. Volz,et al.  Teleautonomous systems: projecting and coordinating intelligent action at a distance , 1990, IEEE Trans. Robotics Autom..

[7]  Hans-Hellmut Nagel,et al.  Incremental recognition of traffic situations from video image sequences , 2000, Image Vis. Comput..

[8]  Margaret M. Fleck,et al.  The topology of boundaries , 1996 .

[9]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[10]  D. Marr,et al.  Representation and recognition of the spatial organization of three-dimensional shapes , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[11]  Shimon Edelman,et al.  Representation and recognition in vision , 1999 .

[12]  Frank P. Ferrie,et al.  From uncertainty to visual exploration , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[13]  Irving Biederman,et al.  Human image understanding: Recent research and a theory , 1985, Comput. Vis. Graph. Image Process..

[14]  Haim Sompolinsky,et al.  Associative network models for central pattern generators , 1989 .

[15]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[16]  Anthony G. Cohn,et al.  Constructing qualitative event models automatically from video input , 2000, Image Vis. Comput..

[17]  Alex M. Andrew,et al.  Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems , 2002 .

[18]  Franc Solina,et al.  Superquadrics for Segmenting and Modeling Range Data , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  S Edelman,et al.  Representation is representation of similarities , 1996, Behavioral and Brain Sciences.

[20]  Irfan A. Essa,et al.  Computers Seeing People , 1999, AI Mag..

[21]  Barr,et al.  Superquadrics and Angle-Preserving Transformations , 1981, IEEE Computer Graphics and Applications.

[22]  Hilary Buxton,et al.  Conceptual descriptions from monitoring and watching image sequences , 2000, Image Vis. Comput..

[23]  Margaret M. Fleck The Topology of Boundaries , 2018, Artif. Intell..

[24]  Salvatore Gaglio,et al.  A Cognitive Architecture for Artificial Vision , 1997, Artif. Intell..

[25]  Henk J. A. M. Heijmans,et al.  Similarity and Symmetry Measures for Convex Shapes Using Minkowski Addition , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Ruzena Bajcsy,et al.  Occlusions as a Guide for Planning the Next View , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Ruzena Bajcsy,et al.  Recovery of Parametric Models from Range Images: The Case for Superquadrics with Global Deformations , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Michael J. Black,et al.  A computational and evolutionary perspective on the role of representation in vision , 1994 .

[30]  Amitabha Mukerjee,et al.  Conceptual description of visual scenes from linguistic models , 2000, Image Vis. Comput..

[31]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[32]  R. Shepard,et al.  Toward a universal law of generalization for psychological science. , 1987, Science.

[33]  Salvatore Gaglio,et al.  An architecture for autonomous agents exploiting conceptual representations , 1998, Robotics Auton. Syst..

[34]  Alex Pentland,et al.  Perceptual Organization and the Representation of Natural Form , 1986, Artif. Intell..

[35]  John G. Gibbons Knowledge in Action , 2001 .

[36]  E. Rosch Cognitive Representations of Semantic Categories. , 1975 .