Distinct signatures of spinning PBH domination and evaporation: doubly peaked gravitational waves, dark relics and CMB complementarity

[1]  D. Borah,et al.  Gravitational wave signatures of a PBH-generated baryon-dark matter coincidence , 2022, Physical Review D.

[2]  D. Borah,et al.  PBH-infused seesaw origin of matter and unique gravitational waves , 2022, Journal of High Energy Physics.

[3]  K. Sinha,et al.  Baryogenesis, primordial black holes and MHz–GHz gravitational waves , 2022, Journal of Cosmology and Astroparticle Physics.

[4]  T. Papanikolaou Gravitational waves induced from primordial black hole fluctuations: the effect of an extended mass function , 2022, Journal of Cosmology and Astroparticle Physics.

[5]  Y. Perez-Gonzalez,et al.  Redshift effects in particle production from Kerr primordial black holes , 2022, Physical Review D.

[6]  M. Lewicki,et al.  Doubly peaked induced stochastic gravitational wave background: testing baryogenesis from primordial black holes , 2022, Journal of High Energy Physics.

[7]  A. Ashoorioon,et al.  NANOGrav signal from the end of inflation and the LIGO mass and heavier primordial black holes , 2022, Physics Letters B.

[8]  K. Kohri,et al.  Cosmological 21-cm line observations to test scenarios of super-Eddington accretion on to black holes being seeds of high-redshifted supermassive black holes , 2022, Physical Review D.

[9]  Ranjan Laha,et al.  Sensitivities on nonspinning and spinning primordial black hole dark matter with global 21-cm troughs , 2021, Physical Review D.

[10]  S. Clesse,et al.  A boosted gravitational wave background for primordial black holes with broad mass distributions and thermal features , 2021, Physics of the Dark Universe.

[11]  Girish Kulkarni,et al.  Constraining primordial black holes as dark matter using the global 21-cm signal with X-ray heating and excess radio background , 2021, Journal of Cosmology and Astroparticle Physics.

[12]  Y. Perez-Gonzalez,et al.  Primordial black hole evaporation and dark matter production. II. Interplay with the freeze-in or freeze-out mechanism , 2021, Physical Review D.

[13]  Y. Perez-Gonzalez,et al.  Primordial black hole evaporation and dark matter production. I. Solely Hawking radiation , 2021, Physical Review D.

[14]  J. Gair,et al.  Common-red-signal analysis with 24-yr high-precision timing of the European Pulsar Timing Array: Inferences in the stochastic gravitational-wave background search , 2021, 2110.13184.

[15]  G. Domènech Scalar Induced Gravitational Waves Review , 2021, Universe.

[16]  G. Dvali,et al.  Primordial Black Holes from Confinement , 2021, 2108.09471.

[17]  A. Arbey,et al.  Physics beyond the standard model with BlackHawk v2.0 , 2021, The European Physical Journal C.

[18]  J. Ellis,et al.  Prospective sensitivities of atom interferometers to gravitational waves and ultralight dark matter , 2021, Philosophical Transactions of the Royal Society A.

[19]  Jinsu Kim,et al.  Primordial black holes from Gauss-Bonnet-corrected single field inflation , 2021, Physical Review D.

[20]  H. Middleton,et al.  On the Evidence for a Common-spectrum Process in the Search for the Nanohertz Gravitational-wave Background with the Parkes Pulsar Timing Array , 2021, 2107.12112.

[21]  M. Bastero-Gil,et al.  Gravity waves and primordial black holes in scalar warm little inflation , 2021, Journal of Cosmology and Astroparticle Physics.

[22]  V. Takhistov,et al.  Exploring evaporating primordial black holes with gravitational waves , 2021, Physics Letters B.

[23]  D. Borah,et al.  Low scale leptogenesis and dark matter in the presence of primordial black holes , 2021, Journal of Cosmology and Astroparticle Physics.

[24]  J. Silk,et al.  Primordial black holes and secondary gravitational waves from ultraslow roll and punctuated inflation , 2021 .

[25]  J. García-Bellido,et al.  Exploring the early Universe with Gaia and Theia , 2021, Journal of Cosmology and Astroparticle Physics.

[26]  A. Arbey,et al.  Precision calculation of dark radiation from spinning primordial black holes and early matter-dominated eras , 2021, Physical Review D.

[27]  R. Brandenberger,et al.  Intermediate mass black hole seeds from cosmic string loops , 2021, Physical Review D.

[28]  I. Masina Dark Matter and Dark Radiation from Evaporating Kerr Primordial Black Holes , 2021, Gravitation and Cosmology.

[29]  T. Kitabayashi Primordial Black Holes and Scotogenic dark matter , 2021, International Journal of Modern Physics A.

[30]  R. Samanta,et al.  Baryogenesis from ultralight primordial black holes and strong gravitational waves from cosmic strings , 2020, 2012.14981.

[31]  L. Anguelova On primordial black holes from rapid turns in two-field models , 2020, Journal of Cosmology and Astroparticle Physics.

[32]  A. Ashoorioon,et al.  Examining the end of inflation with primordial black hole mass distribution and gravitational waves , 2020, Physical Review D.

[33]  N. Bernal,et al.  Gravitational dark matter production: Primordial black holes and UV freeze-in , 2020, Physics Letters B.

[34]  Y. Perez-Gonzalez,et al.  Assessing the tension between a black hole dominated early universe and leptogenesis , 2020, Physical Review D.

[35]  D. Hooper,et al.  GUT baryogenesis with primordial black holes , 2020, 2010.01134.

[36]  R. K. Jain,et al.  Small scale induced gravitational waves from primordial black holes, a stringent lower mass bound, and the imprints of an early matter to radiation transition , 2020, 2009.10424.

[37]  K. Jedamzik Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. , 2020, Physical review letters.

[38]  J. Yokoyama,et al.  Constraints on primordial black holes , 2020, Reports on progress in physics. Physical Society.

[39]  A. Chaudhuri,et al.  PBH Evaporation, Baryon Asymmetry, and Dark Matter , 2020, Journal of Experimental and Theoretical Physics.

[40]  J. García-Bellido,et al.  Unveiling the gravitational universe at μ-Hz frequencies , 2019, Experimental Astronomy.

[41]  J. García-Bellido,et al.  Cosmic conundra explained by thermal history and primordial black holes , 2019, Physics of the Dark Universe.

[42]  M. Sasaki,et al.  Gravitational wave constraints on the primordial black hole dominated early universe , 2020, Journal of Cosmology and Astroparticle Physics.

[43]  M. Raidal,et al.  Two populations of LIGO-Virgo black holes , 2020, Journal of Cosmology and Astroparticle Physics.

[44]  N. Bernal,et al.  Dark matter in the time of primordial black holes , 2020, Journal of Cosmology and Astroparticle Physics.

[45]  V. Vennin,et al.  Gravitational waves from a universe filled with primordial black holes , 2020, Journal of Cosmology and Astroparticle Physics.

[46]  N. Bernal,et al.  Self-interacting dark matter from primordial black holes , 2020, Journal of Cosmology and Astroparticle Physics.

[47]  Stephen R. Taylor,et al.  The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background , 2020, The Astrophysical Journal Letters.

[48]  Barmak Shams Es Haghi,et al.  The Effects of Primordial Black Holes on Dark Matter Models , 2020, 2009.02424.

[49]  P. K. Panda,et al.  GW190521: A Binary Black Hole Merger with a Total Mass of 150  M_{⊙}. , 2020, Physical review letters.

[50]  J. Silk,et al.  PBHs and secondary GWs from ultra slow roll and punctuated inflation. , 2020, 2008.12202.

[51]  D. Hooper,et al.  Constraints on primordial black holes from big bang nucleosynthesis revisited , 2020, 2006.03608.

[52]  B. Carr,et al.  Primordial Black Holes as Dark Matter: Recent Developments , 2020, 2006.02838.

[53]  G. Smoot,et al.  Generating PBHs and small-scale GWs in two-field models of inflation , 2020, Journal of Cosmology and Astroparticle Physics.

[54]  I. Masina Dark matter and dark radiation from evaporating primordial black holes , 2020, The European Physical Journal Plus.

[55]  D. Hooper,et al.  Hot Gravitons and Gravitational Waves From Kerr Black Holes in the Early Universe. , 2020, 2004.00618.

[56]  T. Yanagida,et al.  Gravitational wave production right after a primordial black hole evaporation , 2020, Physical Review D.

[57]  G. Hasinger Illuminating the dark ages: cosmic backgrounds from accretion onto primordial black hole dark matter , 2020, Journal of Cosmology and Astroparticle Physics.

[58]  Jérôme Martin,et al.  Metric preheating and radiative decay in single-field inflation , 2020, Journal of Cosmology and Astroparticle Physics.

[59]  B. Dasgupta,et al.  Neutrino and Positron Constraints on Spinning Primordial Black Hole Dark Matter. , 2019, Physical review letters.

[60]  J. Peacock,et al.  Primordial black hole merger rates: distributions for multiple LIGO observables , 2019, Journal of Cosmology and Astroparticle Physics.

[61]  C. Foot,et al.  AION: an atom interferometer observatory and network , 2019, Journal of Cosmology and Astroparticle Physics.

[62]  V. Sahni,et al.  Primordial black holes from a tiny bump/dip in the inflaton potential , 2019, Journal of Cosmology and Astroparticle Physics.

[63]  M. Fairbairn,et al.  Improved BBN constraints on the variation of the gravitational constant , 2019, The European Physical Journal C.

[64]  C. Lunardini,et al.  Dirac and Majorana neutrino signatures of primordial black holes , 2019, Journal of Cosmology and Astroparticle Physics.

[65]  R. Arya Formation of primordial black holes from warm inflation , 2019, Journal of Cosmology and Astroparticle Physics.

[66]  Jérôme Martin,et al.  Primordial black holes from the preheating instability in single-field inflation , 2019, Journal of Cosmology and Astroparticle Physics.

[67]  R. K. Jain,et al.  Primordial black holes dark matter from inflection point models of inflation and the effects of reheating , 2019, Journal of Cosmology and Astroparticle Physics.

[68]  V. Vaskonen,et al.  On bubble collisions in strongly supercooled phase transitions , 2019 .

[69]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[70]  G. Desvignes,et al.  The International Pulsar Timing Array: second data release , 2019, Monthly Notices of the Royal Astronomical Society.

[71]  Achim Peters,et al.  AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space , 2019, Experimental Astronomy.

[72]  Ranjan Laha Primordial black holes as dark matter candidate are severely constrained by the Galactic Center 511 keV gamma-ray line , 2019 .

[73]  C. Hirata,et al.  Revisiting constraints on asteroid-mass primordial black holes as dark matter candidates , 2019, Journal of Cosmology and Astroparticle Physics.

[74]  A. Arbey,et al.  BlackHawk: a public code for calculating the Hawking evaporation spectra of any black hole distribution , 2019, The European Physical Journal C.

[75]  D. Hooper,et al.  Dark radiation and superheavy dark matter from black hole domination , 2019, Journal of High Energy Physics.

[76]  K. Kohri,et al.  Enhancement of gravitational waves induced by scalar perturbations due to a sudden transition from an early matter era to the radiation era , 2019, Journal of Physics: Conference Series.

[77]  M. Takada,et al.  Constraints on Earth-mass primordial black holes from OGLE 5-year microlensing events , 2019, Physical Review D.

[78]  S. Profumo,et al.  Melanopogenesis: dark matter of (almost) any mass and baryonic matter from the evaporation of primordial black holes weighing a ton (or less) , 2018, Journal of Cosmology and Astroparticle Physics.

[79]  M. Raidal,et al.  Formation and evolution of primordial black hole binaries in the early universe , 2018, Journal of Cosmology and Astroparticle Physics.

[80]  R. Cai,et al.  Gravitational Waves Induced by Non-Gaussian Scalar Perturbations. , 2018, Physical review letters.

[81]  R. Lupton,et al.  Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations , 2017, Nature Astronomy.

[82]  K. Kohri,et al.  Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations , 2018, Physical Review D.

[83]  J. Espinosa,et al.  A cosmological signature of the SM Higgs instability: gravitational waves , 2018, Journal of Cosmology and Astroparticle Physics.

[84]  A. Hektor,et al.  Constraining primordial black holes with the EDGES 21-cm absorption signal , 2018, Physical Review D.

[85]  K. Kohri,et al.  Primordial black hole dark matter and LIGO/Virgo merger rate from inflation with running spectral indices: formation in the matter- and/or radiation-dominated universe , 2018, Classical and Quantum Gravity.

[86]  M. Hertzberg,et al.  Primordial Black Holes from Polynomial Potentials in Single Field Inflation , 2017, 1712.09750.

[87]  M. Taoso,et al.  Primordial black hole dark matter from single field inflation , 2017, 1709.05565.

[88]  J. March-Russell,et al.  Black hole genesis of dark matter , 2017, 1712.07664.

[89]  J. Dent,et al.  Nonthermal production of dark matter from primordial black holes , 2017, 1711.10511.

[90]  M. Kasevich,et al.  Mid-band gravitational wave detection with precision atomic sensors , 2017, 1711.02225.

[91]  Jhu,et al.  Merger rate of primordial black-hole binaries , 2017, 1709.06576.

[92]  V. Poulin,et al.  CMB bounds on disk-accreting massive primordial black holes , 2017, 1707.04206.

[93]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[94]  J. García-Bellido,et al.  Primordial black holes from single field models of inflation , 2017, 1702.03901.

[95]  A. Kusenko,et al.  Primordial Black Holes from Supersymmetry in the Early Universe. , 2016, Physical review letters.

[96]  R. Flauger,et al.  CMB constraints on primordial black hole dark matter , 2016, 1612.06811.

[97]  J. Garc'ia-Bellido,et al.  Detecting the gravitational wave background from primordial black hole dark matter , 2016, 1610.08479.

[98]  J. García-Bellido,et al.  Science with the space-based interferometer LISA. IV: probing inflation with gravitational waves , 2016, 1610.06481.

[99]  S. Iso,et al.  Baryon asymmetry from primordial black holes , 2016, 1610.02586.

[100]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[101]  Mark A. Kasevich,et al.  Resonant mode for gravitational wave detectors based on atom interferometry , 2016, 1606.01860.

[102]  J. Yokoyama,et al.  Constraints on primordial black holes from the Galactic gamma-ray background , 2016, 1604.05349.

[103]  A. Riess,et al.  Did LIGO Detect Dark Matter? , 2016, Physical review letters.

[104]  B. A. Boom,et al.  GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. , 2016, Physical review letters.

[105]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[106]  G. White The baryon asymmetry , 2016 .

[107]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[108]  J. Garc'ia-Bellido,et al.  Massive Primordial Black Holes from Hybrid Inflation as Dark Matter and the seeds of Galaxies , 2015, 1501.07565.

[109]  S. Klimenko,et al.  Advanced LIGO , 2014, 1411.4547.

[110]  L. Shao,et al.  Gravitational wave astronomy with the SKA , 2014, 1501.00127.

[111]  N. Leroy,et al.  Improved constraint on the primordial gravitational-wave density using recent cosmological data and its impact on cosmic string models , 2014, 1408.5299.

[112]  A. Hook Baryogenesis from Hawking Radiation , 2014, 1404.0113.

[113]  M. Kawasaki,et al.  Baryon asymmetry, dark matter, and density perturbation from primordial black holes , 2014, 1401.1909.

[114]  E. Thrane,et al.  Sensitivity curves for searches for gravitational-wave backgrounds , 2013, 1310.5300.

[115]  N. Sugiyama,et al.  The effect of primordial black holes on 21-cm fluctuations , 2012, 1207.6405.

[116]  A. Barnacka,et al.  New constraints on primordial black holes abundance from femtolensing of gamma-ray bursts , 2012, 1204.2056.

[117]  A. Dolgov,et al.  Relic gravitational waves from light primordial black holes , 2011, 1105.2303.

[118]  K. Yagi,et al.  Detector configuration of DECIGO/BBO and identification of cosmological neutron-star binaries , 2011, 1101.3940.

[119]  S. Bose,et al.  Sensitivity studies for third-generation gravitational wave observatories , 2010, 1012.0908.

[120]  Benno Willke,et al.  The Einstein Telescope: a third-generation gravitational wave observatory , 2010 .

[121]  J. Yokoyama,et al.  New cosmological constraints on primordial black holes , 2009, 0912.5297.

[122]  The VIRGO Collaboration , 2010 .

[123]  D. Wands,et al.  Gravitational waves from an early matter era , 2009, 0901.0989.

[124]  J. Yokoyama,et al.  Gravitational-wave background as a probe of the primordial black-hole abundance. , 2008, Physical review letters.

[125]  J. Ostriker,et al.  Effect of Primordial Black Holes on the Cosmic Microwave Background and Cosmological Parameter Estimates , 2007, 0709.0524.

[126]  J. Beaulieu,et al.  Limits on the Macho Content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds , 2006, astro-ph/0607207.

[127]  Tristan L. Smith,et al.  New cosmic microwave background constraint to primordial gravitational waves. , 2006, Physical review letters.

[128]  B. Bassett,et al.  Black hole production in tachyonic preheating , 2006, hep-ph/0601108.

[129]  N. Cornish,et al.  Beyond LISA: Exploring future gravitational wave missions , 2005, gr-qc/0506015.

[130]  A. Sakharov,et al.  The formation of primary galactic nuclei during phase transitions in the early universe , 2001, hep-ph/0106187.

[131]  B. Bassett,et al.  Inflationary preheating and primordial black holes , 2000, hep-ph/0008328.

[132]  A. Sakharov,et al.  Primordial black holes from nonequilibrium second order phase transition , 2000 .

[133]  J. Niemeyer,et al.  Primordial black hole formation during first-order phase transitions , 1999, astro-ph/9901293.

[134]  N. Bell,et al.  Mirror matter and primordial black holes , 1998, astro-ph/9812301.

[135]  U. Wichoski,et al.  Limits on black hole formation from cosmic string loops , 1997, astro-ph/9707146.

[136]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[137]  A. Polnarev,et al.  Formation of primordial black holes by cosmic strings. , 1991, Physical review. D, Particles and fields.

[138]  Webber,et al.  Quark- and gluon-jet emission from primordial black holes: The instantaneous spectra. , 1990, Physical review. D, Particles and fields.

[139]  S. Hawking Black holes from cosmic strings , 1989 .

[140]  H. Kodama,et al.  Abundance of Primordial Holes Produced by Cosmological First-Order Phase Transition , 1982 .

[141]  S. Hawking,et al.  Bubble collisions in the very early universe , 1982 .

[142]  D. Page Particle emission rates from a black hole. III. Charged leptons from a nonrotating hole , 1977 .

[143]  D. Page Particle emission rates from a black hole. II. Massless particles from a rotating hole , 1976 .

[144]  D. Page Particle emission rates from a black hole: Massless particles from an uncharged, nonrotating hole , 1976 .

[145]  B. Carr The Primordial black hole mass spectrum , 1975 .

[146]  G. Chapline,et al.  Cosmological effects of primordial black holes , 1975, Nature.

[147]  S. Hawking Particle creation by black holes , 1975 .

[148]  S. Hawking,et al.  Black Holes in the Early Universe , 1974 .

[149]  Stephen W. Hawking,et al.  Gravitationally collapsed objects of very low mass , 1971 .

[150]  Y. Zel’dovich,et al.  The Hypothesis of Cores Retarded during Expansion and the Hot Cosmological Model , 1966 .