Order Book, Financial Markets and Self-Organized Criticality

We present a simple order book mechanism that regulates an artificial financial market with self-organized criticality dynamics and fat tails of returns distribution. The model shows the role played by individual imitation in determining trading decisions, while fruitfully replicates typical aggregate market behavior as the "self-fulfilling prophecy". We also address the role of random traders as a possible decentralized solution to dampen market fluctuations.

[1]  Richard H. Day,et al.  Bulls, bears and market sheep , 1990 .

[2]  Vygintas Gontis,et al.  Three-state herding model of the financial markets , 2012, 1210.1838.

[3]  Dirk Helbing,et al.  Are Random Trading Strategies More Successful than Technical Ones? , 2013, PloS one.

[4]  Microstructure des marchès financiers : institutions modéles et tests empiriques , 1997 .

[5]  S. Bikhchandani,et al.  You have printed the following article : A Theory of Fads , Fashion , Custom , and Cultural Change as Informational Cascades , 2007 .

[6]  Alessandro Pluchino,et al.  Accidental Politicians: How Randomly Selected Legislators Can Improve Parliament Efficiency , 2011, ArXiv.

[7]  Enrico Scalas,et al.  Fitting the empirical distribution of intertrade durations , 2008 .

[8]  Alessandro Pluchino,et al.  Modeling financial markets by self-organized criticality. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  T. Lux The socio-economic dynamics of speculative markets: interacting agents, chaos, and the fat tails of return distributions , 1998 .

[10]  L. Glosten Is the Electronic Open Limit Order Book Inevitable , 1994 .

[11]  Dirk Helbing,et al.  Reducing financial avalanches by random investments. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Joel Hasbrouck,et al.  Empirical Market Microstructure: The Institutions, Economics, and Econometrics of Securities Trading , 2007 .

[13]  C. Tsallis Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World , 2009 .

[14]  Sergei Maslov,et al.  Price Fluctuations from the Order Book Perspective - Empirical Facts and a Simple Model , 2001, cond-mat/0102518.

[15]  M. Mézard,et al.  Statistical Properties of Stock Order Books: Empirical Results and Models , 2002 .

[16]  Niall O’Higgins,et al.  Research in Economics , 2011 .

[17]  Stanley,et al.  Statistical properties of share volume traded in financial markets , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  Rosario N. Mantegna,et al.  Book Review: An Introduction to Econophysics, Correlations, and Complexity in Finance, N. Rosario, H. Mantegna, and H. E. Stanley, Cambridge University Press, Cambridge, 2000. , 2000 .

[19]  Annals of Operations Research 6(1986)3 13- 3 19 , 2022 .

[20]  Mauro Gallegati,et al.  Macroeconomics from the Bottom-up , 2011 .

[21]  T. Lux Herd Behaviour, Bubbles and Crashes , 1995 .

[22]  A. Tversky,et al.  Prospect theory: analysis of decision under risk , 1979 .

[23]  Carl Chiarella,et al.  Asset price and wealth dynamics under heterogeneous expectations , 2001 .

[24]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.

[25]  Cars H. Hommes,et al.  Financial markets as nonlinear adaptive evolutionary systems , 2001 .

[26]  W. Brock,et al.  Heterogeneous beliefs and routes to chaos in a simple asset pricing model , 1998 .

[27]  R. Thaler,et al.  Chapter 18 A survey of behavioral finance , 2003 .

[28]  William A. Brock,et al.  A rational route to randomness , 1997 .

[29]  B. LeBaron Agent-based Computational Finance , 2006 .

[30]  A. Pluchino,et al.  Micro and macro benefits of random investments in financial markets , 2014, 1405.5805.

[31]  C. Engel Journal of Economic Behavior & Organization , 2015 .

[32]  Alessandro Pluchino,et al.  The Peter Principle Revisited: A Computational Study , 2009, Physica A: Statistical Mechanics and its Applications.

[33]  Dirk Helbing,et al.  Social Self-Organization , 2012 .

[34]  Constantino Tsallis,et al.  Introduction to Nonextensive Statistical Mechanics and Thermodynamics , 2003 .

[35]  B. Swart,et al.  Quantitative Finance , 2006, Metals and Energy Finance.

[36]  Sheldon Goldstein,et al.  JOURNAL OF STATISTICAL PHYSICS Vol.67, Nos.5/6, June 1992 QUANTUM EQUILIBRIUM AND The , 2002 .

[37]  Dirk Helbing,et al.  Quantitative Sociodynamics: Stochastic Methods and Models of Social Interaction Processes , 2010 .

[38]  Maureen O'Hara,et al.  Market Microstructure Theory , 1995 .

[39]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[40]  Models of Compelxity in Economics and Finance , 1997 .

[41]  Damien Challet,et al.  Analyzing and modeling 1+1d markets , 2001 .

[42]  Alessandro Pluchino,et al.  The Beneficial Role of Random Strategies in Social and Financial Systems , 2012, Journal of Statistical Physics.

[43]  Herbert A. Simon,et al.  Models of Man: Social and Rational. , 1957 .

[44]  Alessandro Pluchino,et al.  Efficient Promotion Strategies in a Hierarchical Organization , 2011, ArXiv.

[45]  A. Kyle Continuous Auctions and Insider Trading , 1985 .

[46]  E. Andrade Contemporary Physics , 1945, Nature.

[47]  Pierre Rochus,et al.  Hu, Luojia , Estimation of a censored dynamic panel data model,Econometrica. Journal of the Econometric Society , 2002 .

[48]  Thomas Lux,et al.  Time-Variation of Higher Moments in a Financial Market with Heterogeneous Agents: An Analytical Approach , 2008 .

[49]  George M. Constantinides,et al.  Handbook of the Economics of Finance , 2013 .

[50]  M. Marchesi,et al.  Scaling and criticality in a stochastic multi-agent model of a financial market , 1999, Nature.

[51]  Carl Chiarella,et al.  The dynamics of speculative behaviour , 1992, Ann. Oper. Res..

[52]  Rajiv Sethi,et al.  Cautious trend-seeking and complex asset price dynamics , 1998 .