The Effect of Film Thickness on the Gas Sensing Properties of Ultra-Thin TiO2 Films Deposited by Atomic Layer Deposition

Analyte sensitivity for gas sensors based on semiconducting metal oxides should be highly dependent on the film thickness, particularly when that thickness is on the order of the Debye length. This thickness dependence has previously been demonstrated for SnO2 and inferred for TiO2. In this paper, TiO2 thin films have been prepared by Atomic Layer Deposition (ALD) using titanium isopropoxide and water as precursors. The deposition process was performed on standard alumina gas sensor platforms and microscope slides (for analysis purposes), at a temperature of 200 °C. The TiO2 films were exposed to different concentrations of CO, CH4, NO2, NH3 and SO2 to evaluate their gas sensitivities. These experiments showed that the TiO2 film thickness played a dominant role within the conduction mechanism and the pattern of response for the electrical resistance towards CH4 and NH3 exposure indicated typical n-type semiconducting behavior. The effect of relative humidity on the gas sensitivity has also been demonstrated.

[1]  N. Yamazoe New approaches for improving semiconductor gas sensors , 1991 .

[2]  K. Kukli,et al.  Atomic layer deposition of TiO2 thin films from TiI4 and H2O , 2002 .

[3]  S. Morrison,et al.  Semiconductor gas sensors , 1985 .

[4]  Mikko Ritala,et al.  Atomic Layer Deposition of Photocatalytic TiO2 Thin Films from Titanium Tetramethoxide and Water , 2004 .

[5]  Mitsuteru Kimura,et al.  Application of the air-bridge microheater to gas detection , 1995 .

[6]  Francis Levy,et al.  Electrical and optical properties of TiO2 anatase thin films , 1994 .

[7]  C. Pijolat,et al.  Tin dioxide thin-film gas sensor prepared by chemical vapour deposition : Influence of grain size and thickness on the electrical properties , 1994 .

[8]  Steven M. George,et al.  Thickness dependence of sensor response for CO gas sensing by tin oxide films grown using atomic layer deposition , 2008 .

[9]  I. Szilágyi,et al.  Gas sensing properties of very thin TiO2 films prepared by atomic layer deposition (ALD) , 2014 .

[10]  Mikko Ritala,et al.  Effect of water dose on the atomic layer deposition rate of oxide thin films , 2000 .

[11]  Stella Vallejos,et al.  Important considerations for effective gas sensors based on metal oxide nanoneedles films , 2012 .

[12]  Nicola Donato,et al.  Gas sensing properties and p-type response of ALD TiO2 coated carbon nanotubes , 2015, Nanotechnology.

[13]  M. Ritala,et al.  Titanium isopropoxide as a precursor for atomic layer deposition: characterization of titanium dioxide growth process , 2000 .

[14]  A. Kolmakov,et al.  Toward the nanoscopic "electronic nose": hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano- and mesowire sensors. , 2006, Nano letters.

[15]  Charles C. Sorrell,et al.  Review of the anatase to rutile phase transformation , 2011 .

[16]  J. Aarik,et al.  Morphology and structure of TiO2 thin films grown by atomic layer deposition , 1995 .

[17]  Russell Binions,et al.  Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring , 2010, Sensors.

[18]  C. Detavernier,et al.  Atomic layer deposition of TiO2 from tetrakis-dimethyl-amido titanium or Ti isopropoxide precursors and H2O , 2007 .

[19]  U. Diebold,et al.  The surface and materials science of tin oxide , 2005 .

[20]  J. Grobelny,et al.  Dielectric Properties and Characterisation of Titanium Dioxide Obtained by Different Chemistry Methods , 2014 .

[21]  Wojtek Wlodarski,et al.  Comparison of single and binary oxide MoO3, TiO2 and WO3 sol–gel gas sensors , 2002 .

[22]  G. Margaritondo,et al.  Electronic-Structure of Anatase Tio2 Oxide , 1994 .

[23]  M. Ritala,et al.  Characterization of titanium dioxide atomic layer growth from titanium ethoxide and water , 2000 .

[24]  A. Tarre,et al.  TiO2 thin films by atomic layer deposition : a case of uneven growth at low temperature , 1998 .

[25]  W. Benecke,et al.  Microreactors and microfluidic systems: an innovative approach to gas sensing using tin oxide-based gas sensors , 2001 .

[26]  T. Beebe,et al.  Experimental studies on vacancy induced ferromagnetism in undoped TiO2 , 2007, 0704.2621.

[27]  J. Langford,et al.  Scherrer after sixty years: a survey and some new results in the determination of crystallite size , 1978 .

[28]  M. Girtan,et al.  Gas sensing materials based on TiO2 thin films , 2009 .

[29]  Titanium dioxide (TiO2) thin film based gas sensors , 2014 .

[30]  M. Ritala,et al.  Titanium isopropoxide as a precursor in atomic layer epitaxy of titanium dioxide thin films , 1993 .

[31]  B. Delmon,et al.  Influence of Preparation Methods On the Texture and Structure of Titania-supported On Silica , 1994 .

[32]  N. Pinna,et al.  Atomic Layer Deposition to Materials for Gas Sensing Applications , 2016 .

[33]  N. Bârsan,et al.  Conduction Model of Metal Oxide Gas Sensors , 2001 .

[34]  E. Suh,et al.  TiO2 thin film gas sensor for monitoring ammonia , 2007 .

[35]  B. Delmon,et al.  Influence of the amount of titania on the texture and structure of titania supported on silica , 1996 .