The design and operation of a MEMS differential scanning nanocalorimeter for high-speed heat capacity measurements of ultrathin films

A MEMS sensor has been developed for use as a calorimetric cell in an ultra-sensitive, thin-film, differential scanning calorimetric technique. The sensor contains a freestanding, thin (30 nm to 1000 nm), low-stress silicon nitride membrane with lateral dimensions of a few millimeters. This membrane, along with a thin (50 nm) metallization layer, forms a calorimetric cell with an exceptionally small addenda. This small addenda creates a very sensitive calorimetric cell, able to make heat capacity measurements of nanometer-thick metal and polymer films. The sensor fabrication and various design considerations are discussed in detail. The calorimetric technique and examples of applications are described.

[1]  S. N. Kaul,et al.  Low-temperature magnetization and spin-wave excitations in amorphous Ni-rich transition-metal-metalloid alloys , 1983 .

[2]  R. A. Bayles,et al.  Small particle melting of pure metals , 1986 .

[3]  T. P. Martin,et al.  Observation of electronic shells and shells of atoms in large Na clusters , 1990 .

[4]  G. Hilton,et al.  X‐ray detection using a superconducting transition‐edge sensor microcalorimeter with electrothermal feedback , 1996 .

[5]  Leonard C. Feldman,et al.  Fundamentals of Surface and Thin Film Analysis , 1986 .

[6]  R. Tye,et al.  thermal conductivity , 2019 .

[7]  G. Wedler,et al.  The influence of thickness on the resistivity, the temperature coefficient of resistivity and the thermoelectric power of evaporated palladium films at 77 K and 273 K , 1980 .

[8]  G. Kovacs Micromachined Transducers Sourcebook , 1998 .

[9]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[10]  S. K. Watson,et al.  Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K , 1994 .

[11]  Yu-Chong Tai,et al.  Thermophysical properties of low-residual stress, Silicon-rich, LPCVD silicon nitride films , 1990 .

[12]  Olson,et al.  Discrete periodic melting point observations for nanostructure ensembles , 2000, Physical review letters.

[13]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[14]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[15]  James W. Mayer,et al.  Electronic Materials Science: For Integrated Circuits in Si and GaAS , 1989 .

[16]  G M Whitesides,et al.  Orthogonal Self-Assembled Monolayers: Alkanethiols on Gold and Alkane Carboxylic Acids on Alumina , 1989, Science.

[17]  François Schiettekatte,et al.  Scanning calorimeter for nanoliter-scale liquid samples , 2000 .

[18]  M. Efremov,et al.  Real-time heat capacity measurement during thin-film deposition by scanning nanocalorimetry , 2002 .

[19]  S. Moseley,et al.  Experimental tests of a single‐photon calorimeter for x‐ray spectroscopy , 1984 .

[20]  G. Ehrlich,et al.  Equilibrium shapes and energetics of iridium clusters on Ir(111) , 1997 .

[21]  G. Ramanath,et al.  High‐speed (104 °C/s) scanning microcalorimetry with monolayer sensitivity (J/m2) , 1995 .

[22]  Meng Zhang,et al.  Thin-film differential scanning calorimetry: A new probe for assignment of the glass transition of ultrathin polymer films , 2002 .

[23]  H. Haberland,et al.  Irregular variations in the melting point of size-selected atomic clusters , 1998, Nature.

[24]  P. Buffat,et al.  Size effect on the melting temperature of gold particles , 1976 .

[25]  D. Plazek,et al.  In Physical Properties of Polymers Handbook , 1996 .

[26]  D. Golmayo,et al.  Measurements and interpretation of the electrical resistivity and Hall coefficient in polycrystalline gold films: Part I , 1976 .

[27]  M. Mitome In-situ observation of melting of fine lead particles by high-resolution electron microscopy , 1999 .

[28]  F Calvo,et al.  Entropic effects on the size dependence of cluster structure. , 2001, Physical review letters.

[29]  M. Gaitan,et al.  Tin oxide gas sensor fabricated using CMOS micro-hotplates and in-situ processing , 1993, IEEE Electron Device Letters.

[30]  Mitch,et al.  Phase transition in ultrathin Bi films. , 1991, Physical review letters.

[31]  H. Güntherodt,et al.  Picojoule and submillisecond calorimetry with micromechanical probes , 1998 .

[32]  G. V. Samsonov Chemical Properties of the Elements , 1968 .

[33]  Enrico Gratton,et al.  Detection of luminescent single ultrasmall silicon nanoparticles using fluctuation correlation spectroscopy , 2000 .

[34]  P. Geil,et al.  Nanoscale calorimetry of isolated polyethylene single crystals , 2001 .

[35]  T. Wisleder,et al.  Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements , 2000 .