Plasmonic beaming and active control over fluorescent emission.

Nanometallic optical antennas are rapidly gaining popularity in applications that require exquisite control over light concentration and emission processes. The search is on for high-performance antennas that offer facile integration on chips. Here we demonstrate a new, easily fabricated optical antenna design that achieves an unprecedented level of control over fluorescent emission by combining concepts from plasmonics, radiative decay engineering and optical beaming. The antenna consists of a nanoscale plasmonic cavity filled with quantum dots coupled to a miniature grating structure that can be engineered to produce one or more highly collimated beams. Electromagnetic simulations and confocal microscopy were used to visualize the beaming process. The metals defining the plasmonic cavity can be utilized to electrically control the emission intensity and wavelength. These findings facilitate the realization of a new class of active optical antennas for use in new optical sources and a wide range of nanoscale optical spectroscopy applications.

[1]  F. Garc,et al.  Colloquium: Light scattering by particle and hole arrays , 2009 .

[2]  C. Soukoulis,et al.  Highly directional emission from photonic crystal waveguides of subwavelength width. , 2004, Physical review letters.

[3]  Piers Andrew,et al.  Molecular fluorescence above metallic gratings , 2001 .

[4]  S. Turner,et al.  Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations , 2003, Science.

[5]  Yannick Sonnefraud,et al.  Controlling light localization and light-matter interactions with nanoplasmonics. , 2010, Small.

[6]  Lukas Novotny,et al.  Optical Antennas , 2009 .

[7]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[8]  M. Smit,et al.  Lasing in metallic-coated nanocavities , 2007 .

[9]  Y. Kadoya,et al.  Directional control of light by a nano-optical Yagi–Uda antenna , 2009, 0910.2291.

[10]  O. Muskens,et al.  Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. , 2007, Nano letters.

[11]  G. Vecchi,et al.  Surface plasmon polariton-mediated enhancement of the emission of dye molecules on metallic gratings , 2008 .

[12]  M. Bawendi,et al.  Reversible Charging of CdSe Nanocrystals in a Simple Solid‐State Device , 2002 .

[13]  Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures , 2008, 0808.1466.

[14]  Fernando D Stefani,et al.  Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna. , 2008, Optics express.

[15]  L. Verslegers,et al.  Planar lenses based on nanoscale slit arrays in a metallic film , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[16]  Mark L Brongersma,et al.  Plasmonics: Electrifying plasmonics on silicon. , 2010, Nature materials.

[17]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[18]  R. Walters,et al.  A silicon-based electrical source for surface plasmon polaritons , 2009 .

[19]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[20]  Alessandro Salandrino,et al.  Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain , 2007 .

[21]  Holger F. Hofmann,et al.  Design parameters for a nano-optical Yagi–Uda antenna , 2007, cond-mat/0703595.

[22]  Spectrally resolved confocal microscopy for laser mode imaging and beam characteristic investigations , 2009 .

[23]  P Lalanne,et al.  Theory of surface plasmon generation at nanoslit apertures. , 2005, Physical review letters.

[24]  Vahid Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[25]  Chih-Kung Lee,et al.  Physical origin of directional beaming emitted from a subwavelength slit , 2005 .

[26]  M. Bawendi,et al.  Quantum-confined stark effect in single CdSe nanocrystallite quantum dots , 1997, Science.

[27]  D. Koller,et al.  Organic plasmon-emitting diode , 2008 .

[28]  W. Cai,et al.  Compact, high-speed and power-efficient electrooptic plasmonic modulators. , 2009, Nano letters.

[29]  Horst Weller,et al.  Electrical control of Förster energy transfer , 2006, Nature materials.

[30]  Hervé Rigneault,et al.  Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations. , 2011, Nano letters.

[31]  R A Linke,et al.  Beaming Light from a Subwavelength Aperture , 2002, Science.

[32]  F. G. D. Abajo,et al.  Spontaneous light emission in complex nanostructures , 2004 .

[33]  Byoungho Lee,et al.  Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings , 2007 .

[34]  Zongfu Yu,et al.  Large Single-Molecule Fluorescence Enhancements Produced by a Bowtie Nanoantenna , 2009 .

[35]  Qi Jie Wang,et al.  Small-divergence semiconductor lasers by plasmonic collimation , 2008 .

[36]  Tim H. Taminiau,et al.  Optical antennas direct single-molecule emission , 2008 .

[37]  Mark L. Brongersma,et al.  Strong Modification of Quantum Dot Spontaneous Emission via Gap Plasmon Coupling in Metal Nanoslits , 2010 .

[38]  Ifor D. W. Samuel,et al.  Increased Efficiency and Controlled Light Output from a Microstructured Light-Emitting Diode , 2001 .

[39]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[40]  P. Barbara,et al.  Effect of electric field on the photoluminescence intensity of single CdSe nanocrystals , 2007 .

[41]  Xiang Zhang,et al.  Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. , 2010, Nature materials.

[42]  F. G. D. Abajo Colloquium: Light scattering by particle and hole arrays , 2007, 0903.1671.

[43]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[44]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.