Rectal dose sparing with a balloon catheter and ultrasound localization in conformal radiation therapy for prostate cancer.

BACKGROUND AND PURPOSE To compare the rectal wall and bladder volume in the high dose region with or without the use of a balloon catheter with both three-dimensional (3D)-conformal and intensity modulated radiation therapy (CRT, IMRT) approaches in the treatment of prostate cancer. MATERIAL AND METHODS Five patients with a wide range of prostate volumes and treated with primary external beam radiation therapy for localized prostate cancer were selected for analysis. Pinnacle treatment plans were generated utilizing a 3D conformal six-field design and an IMRT seven coplanar-field plan with a novel, three-step optimization and with ultrasound localization. Separate plans were devised with a rectal balloon deflated or air inflated with and without inclusion of the seminal vesicles (SV) in the target volume. The prescription dose was 76Gy in 38 fractions of 2Gy each. Cumulative dose-volume histograms (DVHs) were analyzed for the planning target volume (PTV), rectal wall, and bladder with an inflated (60cc air) or deflated balloon with and without SV included. The volumes of rectal wall and bladder above 60, 65, and 70Gy with each treatment approach were evaluated. RESULTS Daily balloon placement was well-tolerated with good patient positional reproducibility. Inflation of the rectal balloon in all cases resulted in a significant decrease in the absolute volume of rectal wall receiving greater than 60, 65, or 70Gy. The rectal sparing ratio (RSR), consisting of a structure's high dose volume with the catheter inflated, divided by the volume with the catheter deflated, was calculated for each patient with and without seminal vesicle inclusion for 3D-CRT and IMRT. For 3D-CRT, RSRs with SV included were 0.59, 0.59, and 0.56 and with SV excluded were 0.60, 0.58, and 0.54 at doses of greater than 60, 65, and 70Gy, respectively. Similarly, for IMRT, the mean RSRs were 0.59, 0.59, and 0.63 including SV and 0.71, 0.66, and 0.67 excluding SV at these same dose levels, respectively. Averaged over all conditions, inflation of the rectal balloon resulted in a significant reduction in rectal volume receiving > or =65Gy to a mean ratio of 0.61 (P=0.01) or, in other words, a mean fractional high dose rectal sparing of 39%. There was a slight overall increase to 1.13 in the relative volume of bladder receiving at least 65Gy; however, this was not significant (P=0.6). Use of an endorectal balloon with a non-image-guided 3D-CRT plan produced about as much rectal dose sparing as a highly conformal, image-guided IMRT approach without a balloon. However, inclusion of a balloon with IMRT produced further rectal sparing still. CONCLUSION These results indicate that use of a rectal balloon with a 3D-CRT plan incorporating typical treatment margins will produce significant high dose rectal sparing that is comparable to that achieved by a highly conformal IMRT with ultrasound localization. Further sparing is achieved with the inclusion of a balloon catheter in an IMRT plan. Thus, in addition to a previously reported advantage of prostate immobilization, the use of a rectal displacement balloon during daily treatment results in high dose rectal wall sparing during both modestly and highly conformal radiotherapy. Such sparing could assist in controlling and limiting rectal toxicity during increasingly aggressive dose escalation.

[1]  L. Gras,et al.  Estimation of the incidence of late bladder and rectum complications after high-dose (70-78 GY) conformal radiotherapy for prostate cancer, using dose-volume histograms. , 1998, International journal of radiation oncology, biology, physics.

[2]  A. Hanlon,et al.  Rectal bleeding after conformal 3D treatment of prostate cancer: time to occurrence, response to treatment and duration of morbidity. , 1997, International journal of radiation oncology, biology, physics.

[3]  T E Schultheiss,et al.  Dose escalation with 3D conformal treatment: five year outcomes, treatment optimization, and future directions. , 1998, International journal of radiation oncology, biology, physics.

[4]  A. Hanlon,et al.  Late GI and GU complications in the treatment of prostate cancer. , 1997, International journal of radiation oncology, biology, physics.

[5]  R. Pötter,et al.  The influence of a rectal balloon tube as internal immobilization device on variations of volumes and dose-volume histograms during treatment course of conformal radiotherapy for prostate cancer. , 2002, International journal of radiation oncology, biology, physics.

[6]  W. Grant,et al.  Prostate immobilization with rectal catheter / balloon for IMRT: a prostate motion study , 2001 .

[7]  A Pollack,et al.  Complications from radiotherapy dose escalation in prostate cancer: preliminary results of a randomized trial. , 2000, International journal of radiation oncology, biology, physics.

[8]  E. B. Butler,et al.  Intensity-modulated radiation therapy (IMRT) for prostate cancer with the use of a rectal balloon for prostate immobilization: acute toxicity and dose-volume analysis. , 2001, International journal of radiation oncology, biology, physics.

[9]  P. Carroll,et al.  The response of the urinary bladder, urethra, and ureter to radiation and chemotherapy. , 1995, International journal of radiation oncology, biology, physics.

[10]  T E Schultheiss,et al.  A comparison of daily CT localization to a daily ultrasound-based system in prostate cancer. , 1999, International journal of radiation oncology, biology, physics.

[11]  A. Markoe,et al.  Preliminary report of toxicity following 3D radiation therapy for prostate cancer on 3DOG/RTOG 9406. , 2000, International journal of radiation oncology, biology, physics.

[12]  G Starkschall,et al.  Preliminary results of a randomized radiotherapy dose-escalation study comparing 70 Gy with 78 Gy for prostate cancer. , 2000, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[13]  J. Manola,et al.  A practical method to achieve prostate gland immobilization and target verification for daily treatment. , 2001, International journal of radiation oncology, biology, physics.

[14]  T E Schultheiss,et al.  Daily CT localization for correcting portal errors in the treatment of prostate cancer. , 1998, International journal of radiation oncology, biology, physics.

[15]  William R. Fair,et al.  DOSE ESCALATION WITH THREE-DIMENSIONAL CONFORMAL RADIATION THERAPY AFFECTS THE OUTCOME IN PROSTATE CANCER , 1998 .

[16]  P. Levendag,et al.  Acute morbidity reduction using 3DCRT for prostate carcinoma: a randomized study. , 1999, International journal of radiation oncology, biology, physics.

[17]  A. Pollack,et al.  Late effects after radiotherapy for prostate cancer in a randomized dose-response study: results of a self-assessment questionnaire. , 1998, Urology.

[18]  D. Spelbring,et al.  A method of analyzing rectal surface area irradiated and rectal complications in prostate conformal radiotherapy. , 1995, International journal of radiation oncology, biology, physics.

[19]  D. Dearnaley,et al.  Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomised trial , 1999, The Lancet.