Actionable Activating Oncogenic ERBB2/HER2 Transmembrane and Juxtamembrane Domain Mutations.

[1]  J. Flowers,et al.  Origins and geographic diversification of African rice (Oryza glaberrima) , 2018, bioRxiv.

[2]  L. Gianni Is there room for another HER2-targeting drug? , 2018, The Lancet Oncology.

[3]  B. Taylor,et al.  HER kinase inhibition in patients with HER2- and HER3-mutant cancers , 2018, Nature.

[4]  Doron Lipson,et al.  High-Throughput Genomic Profiling of Adult Solid Tumors Reveals Novel Insights into Cancer Pathogenesis. , 2017, Cancer research.

[5]  Vamsidhar Velcheti,et al.  HER2 Transmembrane Domain (TMD) Mutations (V659/G660) That Stabilize Homo‐ and Heterodimerization Are Rare Oncogenic Drivers in Lung Adenocarcinoma That Respond to Afatinib , 2017, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[6]  K. Haustermans,et al.  Gastric cancer , 2016, The Lancet.

[7]  P. Stephens,et al.  Nonamplification ERBB2 genomic alterations in 5605 cases of recurrent and metastatic breast cancer: An emerging opportunity for anti‐HER2 targeted therapies , 2016, Cancer.

[8]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[9]  R. Bose,et al.  HER2 missense mutations have distinct effects on oncogenic signaling and migration , 2015, Proceedings of the National Academy of Sciences.

[10]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[11]  Ron Bose,et al.  HER2 activating mutations are targets for colorectal cancer treatment. , 2015, Cancer discovery.

[12]  J. Kuriyan,et al.  A structural perspective on the regulation of the epidermal growth factor receptor. , 2015, Annual review of biochemistry.

[13]  Y. Ung,et al.  Use of the epidermal growth factor receptor inhibitors gefitinib, erlotinib, afatinib, dacomitinib, and icotinib in the treatment of non-small-cell lung cancer: a systematic review. , 2015, Current oncology.

[14]  Venkatesh Mysore,et al.  Structural analysis of the EGFR/HER3 heterodimer reveals the molecular basis for activating HER3 mutations , 2014, Science Signaling.

[15]  D. Leahy,et al.  Kinase Activator-Receiver Preference in ErbB Heterodimers Is Determined by Intracellular Regions and Is Not Coupled to Extracellular Asymmetry* , 2014, The Journal of Biological Chemistry.

[16]  Steven J. M. Jones,et al.  Comprehensive molecular profiling of lung adenocarcinoma , 2014, Nature.

[17]  Guillermo A. Gomez,et al.  Mechanism of Activation of Protein Kinase JAK2 by the Growth Hormone Receptor , 2014, Science.

[18]  J. Soh,et al.  Hereditary Lung Cancer Syndrome Targets Never Smokers with Germline EGFR Gene T790M Mutations , 2014, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[19]  R. Stroud,et al.  Architecture of a single membrane spanning cytochrome P450 suggests constraints that orient the catalytic domain relative to a bilayer , 2014, Proceedings of the National Academy of Sciences.

[20]  J. Soh,et al.  Novel Germline Mutation in the Transmembrane Domain of HER2 in Familial Lung Adenocarcinomas , 2013, Journal of the National Cancer Institute.

[21]  G. MacBeath,et al.  Single-cell quantitative HER2 measurement identifies heterogeneity and distinct subgroups within traditionally defined HER2-positive patients. , 2013, The American journal of pathology.

[22]  Alex M. Fichtenholtz,et al.  Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing , 2013, Nature Biotechnology.

[23]  Mauricio O. Carneiro,et al.  From FastQ Data to High‐Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline , 2013, Current protocols in bioinformatics.

[24]  Jing Huang,et al.  CHARMM36 all‐atom additive protein force field: Validation based on comparison to NMR data , 2013, J. Comput. Chem..

[25]  Somasekar Seshagiri,et al.  Oncogenic ERBB3 mutations in human cancers. , 2013, Cancer cell.

[26]  K. Kinzler,et al.  Cancer Genome Landscapes , 2013, Science.

[27]  Li Ding,et al.  Activating HER2 mutations in HER2 gene amplification negative breast cancer. , 2013, Cancer discovery.

[28]  D. Shaw,et al.  Conformational Coupling across the Plasma Membrane in Activation of the EGF Receptor , 2013, Cell.

[29]  Anton Arkhipov,et al.  Architecture and Membrane Interactions of the EGF Receptor , 2013, Cell.

[30]  R. Koeppe,et al.  Buried lysine, but not arginine, titrates and alters transmembrane helix tilt , 2013, Proceedings of the National Academy of Sciences.

[31]  C. Eng,et al.  Germline PIK3CA and AKT1 mutations in Cowden and Cowden-like syndromes. , 2013, American journal of human genetics.

[32]  Wendy Winckler,et al.  Functional analysis of receptor tyrosine kinase mutations in lung cancer identifies oncogenic extracellular domain mutations of ERBB2 , 2012, Proceedings of the National Academy of Sciences.

[33]  Charles R. Sanders,et al.  The Amyloid Precursor Protein Has a Flexible Transmembrane Domain and Binds Cholesterol , 2012, Science.

[34]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[35]  H. Stern Improving Treatment of HER2-Positive Cancers: Opportunities and Challenges , 2012, Science Translational Medicine.

[36]  T. Ulmer,et al.  Snorkeling Basic Amino Acid Side Chains Regulate Transmembrane Integrin Signalling , 2011, Nature.

[37]  Hyeon Joo,et al.  OPM database and PPM web server: resources for positioning of proteins in membranes , 2011, Nucleic Acids Res..

[38]  Jamie K Teer,et al.  A mosaic activating mutation in AKT1 associated with the Proteus syndrome. , 2011, The New England journal of medicine.

[39]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[40]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[41]  Shigeyuki Yokoyama,et al.  Structural Evidence for Loose Linkage between Ligand Binding and Kinase Activation in the Epidermal Growth Factor Receptor , 2010, Molecular and Cellular Biology.

[42]  R. Koeppe,et al.  Charged or Aromatic Anchor Residue Dependence of Transmembrane Peptide Tilt* , 2010, The Journal of Biological Chemistry.

[43]  W. DeGrado,et al.  Transmembrane polar interactions are required for signaling in the Escherichia coli sensor kinase PhoQ , 2010, Proceedings of the National Academy of Sciences.

[44]  Robert Gentleman,et al.  ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data , 2009, Bioinform..

[45]  J. Baselga,et al.  Novel anticancer targets: revisiting ERBB2 and discovering ERBB3 , 2009, Nature Reviews Cancer.

[46]  V. Grantcharova,et al.  Therapeutically Targeting ErbB3: A Key Node in Ligand-Induced Activation of the ErbB Receptor–PI3K Axis , 2009, Science Signaling.

[47]  A. Pozzi,et al.  The juxtamembrane region of the EGF receptor functions as an activation domain. , 2009, Molecular cell.

[48]  John Kuriyan,et al.  Mechanism for Activation of the EGF Receptor Catalytic Domain by the Juxtamembrane Segment , 2009, Cell.

[49]  M J Harvey,et al.  ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale. , 2009, Journal of chemical theory and computation.

[50]  Roman G. Efremov,et al.  Spatial Structure of the Dimeric Transmembrane Domain of the Growth Factor Receptor ErbB2 Presumably Corresponding to the Receptor Active State* , 2008, Journal of Biological Chemistry.

[51]  Carlos L Arteaga,et al.  HER2 kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR tyrosine kinase inhibitors. , 2006, Cancer cell.

[52]  John Kuriyan,et al.  An Allosteric Mechanism for Activation of the Kinase Domain of Epidermal Growth Factor Receptor , 2006, Cell.

[53]  R. Hennekam,et al.  Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome , 2006, Nature Genetics.

[54]  Gayatry Mohapatra,et al.  Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR , 2005, Nature Genetics.

[55]  H. Lane,et al.  ERBB receptors and cancer: the complexity of targeted inhibitors , 2005, Nature Reviews Cancer.

[56]  E. Andrechek,et al.  Germ-line expression of an oncogenic erbB2 allele confers resistance to erbB2-induced mammary tumorigenesis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Jayanta Debnath,et al.  Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. , 2003, Methods.

[58]  T. Springer,et al.  The critical cytoplasmic regions of the αL/β2 integrin in Rap1-induced adhesion and migration , 2003 .

[59]  Sarel J. Fleishman,et al.  A putative molecular-activation switch in the transmembrane domain of erbB2 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Tudor Savopol,et al.  Molecular basis of transmembrane signalling by sensory rhodopsin II–transducer complex , 2002, Nature.

[61]  M. Bissell,et al.  ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini , 2001, Nature Cell Biology.

[62]  A. Berezov,et al.  HER2/Neu: mechanisms of dimerization/oligomerization , 2000, Oncogene.

[63]  A. N. Meyer,et al.  Rotational coupling of the transmembrane and kinase domains of the Neu receptor tyrosine kinase. , 2000, Molecular biology of the cell.

[64]  M. Gerstein,et al.  Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions. , 2000, Journal of molecular biology.

[65]  Berk Hess,et al.  Improving efficiency of large time‐scale molecular dynamics simulations of hydrogen‐rich systems , 1999, Journal of computational chemistry.

[66]  D. Engelman,et al.  Dimerization of the p185neu transmembrane domain is necessary but not sufficient for transformation , 1997, Oncogene.

[67]  T. van Raaij,et al.  The cellular response to neuregulins is governed by complex interactions of the erbB receptor family , 1995, Molecular and cellular biology.

[68]  D. Engelman,et al.  A dimerization motif for transmembrane α–helices , 1994, Nature Structural Biology.

[69]  W. Gullick,et al.  Neu receptor dimerization , 1989, Nature.

[70]  Cori Bargmann,et al.  Oncogenic activation of the neu‐encoded receptor protein by point mutation and deletion. , 1988, The EMBO journal.

[71]  Cori Bargmann,et al.  Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185 , 1986, Cell.

[72]  R. Weinberg,et al.  The neu gene: an erbB-homologous gene distinct from and unlinked to the gene encoding the EGF receptor. , 1985, Science.

[73]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[74]  S. Heinemann,et al.  Clonal cell lines from the rat central nervous system , 1974, Nature.

[75]  N. Socci,et al.  Accelerating Discovery of Functional Mutant Alleles in Cancer. , 2018, Cancer discovery.

[76]  R. Roskoski The ErbB/HER family of protein-tyrosine kinases and cancer. , 2014, Pharmacological research.

[77]  Carlos L. Arteaga,et al.  Treatment of HER2-positive breast cancer: current status and future perspectives , 2012, Nature Reviews Clinical Oncology.

[78]  K. Hristova,et al.  A Look at Arginine in Membranes , 2010, The Journal of Membrane Biology.

[79]  Berk Hess,et al.  Improving Efficiency of Large Time-Scale Molecular Dynamics Simulations of Hydrogen-Rich Systems , 1999 .