Black silicon (BS) using room-temperature reactive ion etching (RT-RIE) for interdigitated back contact (IBC) silicon solar cells

Black silicon processing is a promising research area to improve optical properties of silicon solar cells. Currently, RIE method is used at cryogenic temperature because it enables a very good control of shapes of nano-structures but working at cryogenic temperature in a clean room can be an issue. In order to produce black silicon under realistic industrial conditions, room temperature process has to be achieved. We present a study aiming at etching silicon wafer surfaces using “Room Temperature SF6/O2 Reactive Ion Etching” (RT-RIE).

[1]  Marika Edoff,et al.  Interface engineering of ultrathin Cu(In,Ga)Se2 solar cells on reflective back contacts , 2020, Progress in Photovoltaics: Research and Applications.

[2]  Thomas Käsebier,et al.  Black Silicon Photovoltaics , 2012, Photonics Europe.

[3]  Tarik Bourouina,et al.  On the optical and morphological properties of microstructured Black Silicon obtained by cryogenic-enhanced plasma reactive ion etching , 2013 .

[4]  Miko Elwenspoek,et al.  The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control , 1995 .

[5]  Armin G. Aberle,et al.  Surface passivation of crystalline silicon solar cells: a review , 2000 .

[6]  Remi Dussart,et al.  Plasma cryogenic etching of silicon: from the early days to today's advanced technologies , 2014 .

[7]  B. Hoex,et al.  Black silicon: fabrication methods, properties and solar energy applications , 2014 .

[8]  H. Savin,et al.  Effect of Different ALD Al2O3 Oxidants on the Surface Passivation of Black Silicon , 2016 .

[9]  M. Belarbi,et al.  Simulation and optimization of n-type interdigitated back contact silicon heterojunction (IBC-SiHJ) solar cell structure using Silvaco Tcad Atlas , 2016 .

[10]  Hele Savin,et al.  Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. , 2015, Nature nanotechnology.

[11]  Hao-Chih Yuan,et al.  An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. , 2012, Nature nanotechnology.

[12]  J. Fluitman,et al.  A survey on the reactive ion etching of silicon in microtechnology , 1996 .