Portable L-Band Radiometer (PoLRa): Design and Characterization

A low-mass and low-volume dual-polarization L-band radiometer is introduced that has applications for ground-based remote sensing or unmanned aerial vehicle (UAV)-based mapping. With prominent use aboard the ESA Soil Moisture and Ocean Salinity (SMOS) and NASA Soil Moisture Active Passive (SMAP) satellites, L-band radiometry can be used to retrieve environmental parameters, including soil moisture, sea surface salinity, snow liquid water content, snow density, vegetation optical depth, etc. The design and testing of the air-gapped patch array antenna is introduced and is shown to provide a 3-dB full power beamwidth of 37°. We present the radio-frequency (RF) front end design, which uses direct detection architecture and a square-law power detector. Calibration is performed using two internal references, including a matched resistive source (RS) at ambient temperature and an active cold source (ACS). The radio-frequency (RF) front end does not require temperature stabilization, due to characterization of the ACS noise temperature by sky measurements. The ACS characterization procedure is presented. The noise equivalent delta (Δ) temperature (NEΔT) of the radiometer is ~0.14 K at 1 s integration time. The total antenna temperature uncertainty ranges from 0.6 to 1.5 K.

[1]  M. Schwank,et al.  Snow wetness retrieved from close-range L-band radiometry in the western Greenland ablation zone , 2020, Journal of Glaciology.

[2]  Adriano Camps,et al.  Normality Analysis for RFI Detection in Microwave Radiometry , 2010, Remote. Sens..

[3]  Manuel Martín-Neira,et al.  SMOS: The Payload , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Adriano Camps,et al.  Design and First Results of an UAV-Borne L-Band Radiometer for Multiple Monitoring Purposes , 2010, Remote. Sens..

[5]  Joel T. Johnson,et al.  Time and Frequency Blanking for Radio-Frequency Interference Mitigation in Microwave Radiometry , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Arnaud Mialon,et al.  The SMOS Soil Moisture Retrieval Algorithm , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Mike Schwank,et al.  Snow Wetness Reftrieved from L-Band Radiometry , 2018, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium.

[8]  H. H. Ku Notes on the Use of Propagation of Error Formulas , 2010 .

[9]  Yann Kerr,et al.  SMOS: The Challenging Sea Surface Salinity Measurement From Space , 2010, Proceedings of the IEEE.

[10]  Matthias Drusch,et al.  Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze‐up period , 2012 .

[11]  K. Moffett,et al.  Remote Sens , 2015 .

[12]  Jiancheng Shi,et al.  The Soil Moisture Active Passive (SMAP) Mission , 2010, Proceedings of the IEEE.

[13]  Andreas Wiesmann,et al.  Detection of soil freezing from L-band passive microwave observations , 2014 .

[14]  Urs Wegmüller,et al.  ELBARA II, an L-Band Radiometer System for Soil Moisture Research , 2009, Sensors.

[15]  Lars Isaksen,et al.  SMOS Brightness Temperature Angular Noise: Characterization, Filtering, and Validation , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Robert J. Gurney,et al.  A sensitivity analysis of soil moisture retrieval from the tau-omega microwave emission model , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Albin J. Gasiewski,et al.  An ultra-lightweight L-band digital Lobe-Differencing Correlation Radiometer (LDCR) for airborne UAV SSS mapping , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[18]  T. Mo,et al.  A model for microwave emission from vegetation‐covered fields , 1982 .

[19]  Peter Toose,et al.  Snow Density and Ground Permittivity Retrieved from L-Band Radiometry: A Synthetic Analysis , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[20]  David M. Le Vine,et al.  Galactic noise and passive microwave remote sensing from space at L-band , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Mike Schwank,et al.  Snow Density and Ground Permittivity Retrieved from L-Band Radiometry: Melting Effects , 2018, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium.

[22]  Joel T. Johnson,et al.  Airborne L-band RFI observations in the smapvex08 campaign with the L-band interference suppressing radiometer , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[23]  Mike Schwank,et al.  "Tau-Omega"- and Two-Stream Emission Models Used for Passive L-Band Retrievals: Application to Close-Range Measurements over a Forest , 2018, Remote. Sens..

[24]  Yann Kerr,et al.  Two-year global simulation of L-band brightness temperatures over land , 2003, IEEE Trans. Geosci. Remote. Sens..

[25]  Chris Derksen,et al.  SMOS prototype algorithm for detecting autumn soil freezing , 2016 .

[26]  Paul Racette,et al.  Radiometer design analysis based upon measurement uncertainty , 2005 .

[27]  Roger D. De Roo,et al.  An L-band Radio Frequency Interference (RFI) detection and mitigation testbed for microwave radiometry , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[28]  Niels Skou,et al.  Measurements on Active Cold Loads for Radiometer Calibration , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[29]  L. Escotte,et al.  SiGe HBT-Based Active Cold Load for Radiometer Calibration , 2010, IEEE Microwave and Wireless Components Letters.

[30]  Yann Kerr,et al.  Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission , 2001, IEEE Trans. Geosci. Remote. Sens..

[31]  F. Frappart,et al.  Compared performances of SMOS-IC soil moisture and vegetation optical depth retrievals based on Tau-Omega and Two-Stream microwave emission models , 2020 .

[32]  J. Randa Uncertainties in NIST Noise-Temperature Measurements | NIST , 1998 .

[33]  K. Steffen,et al.  Snow wetness and density retrieved from L-band satellite radiometer observations over a site in the West Greenland ablation zone , 2019 .

[34]  A. Al Bitar,et al.  An evaluation of SMOS L-band vegetation optical depth (L-VOD) data sets: high sensitivity of L-VOD to above-ground biomass in Africa , 2018, Biogeosciences.

[35]  David M. Le Vine,et al.  Aquarius: An Instrument to Monitor Sea Surface Salinity From Space , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Mike Schwank,et al.  Davos-Laret Remote Sensing Field Laboratory: 2016/2017 Winter Season L-Band Measurements Data-Processing and Analysis , 2017, Remote. Sens..