High performance information reconciliation for QKD with CASCADE

It is widely accepted in the quantum cryptography community that interactive information reconciliation protocols, such as cascade, are inefficient due to the communication overhead. Instead, non-interactive information reconciliation protocols based on i.e. LDPC codes or, more recently, polar codes have been proposed. In this work, we argue that interactive protocols should be taken into consideration in modern quantum key distribution systems. In particular, we demonstrate how to improve the performance of cascade by proper implementation and use. Our implementation of cascade reaches a throughput above 80 Mbps under realistic conditions. This is more than twice the throughput previously demonstrated in any information reconciliation protocol.

[1]  V. Scarani,et al.  Fast and simple one-way quantum key distribution , 2005, quant-ph/0506097.

[2]  Nino Walenta,et al.  Concepts, components and implementations for quantum key distribution over optical fibers , 2013 .

[3]  Joonwoo Bae,et al.  Key distillation from quantum channels using two-way communication protocols , 2007 .

[4]  J. Dynes,et al.  Unconditionally secure one-way quantum key distribution using decoy pulses , 2007, 2007 Quantum Electronics and Laser Science Conference.

[5]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[6]  A R Dixon,et al.  Continuous operation of high bit rate quantum key distribution , 2010, 1005.4573.

[7]  Sébastien Kunz-Jacques,et al.  High performance error correction for quantum key distribution using polar codes , 2014, Quantum Inf. Comput..

[8]  Yoshihisa Yamamoto,et al.  Differential phase shift quantum key distribution. , 2002 .

[9]  Wei Chen,et al.  2 GHz clock quantum key distribution over 260 km of standard telecom fiber. , 2012, Optics letters.

[10]  Nicolas Gisin,et al.  Sine gating detector with simple filtering for low-noise infra-red single photon detection at room temperature , 2012, 1205.3084.

[11]  C. G. Peterson,et al.  Fast, efficient error reconciliation for quantum cryptography , 2002, quant-ph/0203096.

[12]  T. Sugimoto,et al.  A Study on Secret key Reconciliation Protocol "Cascade" , 2000 .

[13]  Andrew J. Shields,et al.  Erratum: Unconditionally secure one-way quantum key distribution using decoy pulses (Applied Physics Letters (2007) 90 (011118)) , 2007 .

[14]  Alan Mink,et al.  LDPC for QKD Reconciliation , 2012, ArXiv.

[15]  Marco Tomamichel,et al.  Tight finite-key analysis for quantum cryptography , 2011, Nature Communications.

[16]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[17]  J. Dynes,et al.  Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate. , 2008, Optics express.

[18]  Sébastien Kunz-Jacques,et al.  Long Distance Continuous-Variable Quantum Key Distribution with a Gaussian Modulation , 2011, Physical Review A.

[19]  David Elkouss,et al.  Analysis of a rate-adaptive reconciliation protocol and the effect of the leakage on the secret key rate , 2013, ArXiv.

[20]  Ronald F. Boisvert,et al.  Quantum key distribution system operating at sifted-key rate over 4 Mbit/s , 2006, SPIE Defense + Commercial Sensing.

[21]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[22]  A. W. Sharpe,et al.  Coexistence of High-Bit-Rate Quantum Key Distribution and Data on Optical Fiber , 2012, 1212.0033.

[23]  David Elkouss,et al.  Key Reconciliation for High Performance Quantum Key Distribution , 2013, Scientific Reports.

[24]  Andreas Burg,et al.  1 Mbps coherent one-way QKD with dense wavelength division multiplexing and hardware key distillation , 2012 .

[25]  Romain Alléaume,et al.  Multidimensional reconciliation for continuous-variable quantum key distribution , 2007, 2008 IEEE International Symposium on Information Theory.

[26]  A R Dixon,et al.  Field test of quantum key distribution in the Tokyo QKD Network. , 2011, Optics express.

[27]  Alan Mink Custom hardware to eliminate bottlenecks in QKD throughput performance , 2007, SPIE Optics East.

[28]  S. McLaughlin,et al.  Quantum key distribution over 25 km with an all-fiber continuous-variable system , 2007, 0706.4255.

[29]  野崎 隆之,et al.  国際会議参加報告:IEEE International Symposium on Information Theory , 2015 .

[30]  Tor Helleseth,et al.  Advances in Cryptology — EUROCRYPT ’93 , 2001, Lecture Notes in Computer Science.

[31]  H. Weinfurter,et al.  Air-to-ground quantum communication , 2013, Nature Photonics.

[32]  Gilles Brassard,et al.  Secret-Key Reconciliation by Public Discussion , 1994, EUROCRYPT.

[33]  Renato Renner,et al.  Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing. , 2007, Physical review letters.

[34]  Dave Cliff,et al.  In/Proceedings of the 15th IEEE International Conference on the Engineering of Complex Computer Systems/ (ICECCS 2010), Oxford , 2010 .

[35]  David Elkouss,et al.  Efficient reconciliation protocol for discrete-variable quantum key distribution , 2009, 2009 IEEE International Symposium on Information Theory.