Soviet lunar sample return missions: Landing site identification and geologic context

Abstract The Lunar Reconnaissance Orbiter Camera (LROC) imaged the landing sites and spacecraft from the Soviet Union's Luna robotic sample return program (Luna 16, 20, and 24) allowing their locations to be determined with unprecedented precision and, more importantly, for the geologic context of the landing sites to be firmly established. Uncertainties in the position of the landing sites are now 25 m (or better), as opposed to kilometers prior to LROC observations. Because of the past uncertainty of the locations, as well as the fact that two of the Luna missions were conducted at night, the geologic context of the samples was only poorly known. LROC images reveal that the Luna 24 sample was collected on the rim of a small impact crater, providing an explanation for the compositional and maturity discrepancy that has existed for the past three decades between samples and remote sensing of the Mare Crisium surface. The location of the unsuccessful Luna 23 spacecraft is also determined and the nature of the failure confirmed.

[1]  G. J. Taylor,et al.  Luna 16 - Relative proportions and petrologic significance of particles in the soil from Mare Fecunditatis. , 1972 .

[2]  D. H. Scott,et al.  The geologic setting of the Luna 16 landing site , 1972 .

[3]  L. Rowan,et al.  Lunar Orbiter Photographs: Some Fundamental Observations , 1967, Science.

[4]  V. L. Barsukov Preliminary data for the regolith core brought to earth by the automatic lunar station Luna 24. , 1977 .

[5]  G. Wasserburg,et al.  The age and petrography of two Luna 20 fragments and inferences for widespread lunar metamorphism , 1973 .

[6]  W. Ridley,et al.  Petrology of a portion of the Mare Fecunditatis regolith , 1972 .

[7]  M. Crawford,et al.  Petrology of Luna 20 regolith from the lunar highlands , 1973 .

[8]  T. R. Venkatesan,et al.  Depositional history of Luna 24 drill core soil samples , 1979 .

[9]  G. Heiken,et al.  The geologic setting of the Luna 20 site. , 1972 .

[10]  F. Albarède,et al.  39Ar-40Ar systematics of two millimeter-sized rock fragments from Mare Crisium , 1978 .

[11]  K. L. Edmundson,et al.  Generating digital terrain models using lroc nac images , 2010 .

[12]  J. C. Laul,et al.  The lunar regolith: comparative studies of the Apollo and Luna sites. Chemistry of soils from Apollo 17, Luna 16, 20, and 24. , 1982 .

[13]  B. Harvey Soviet and Russian Lunar Exploration , 2006 .

[14]  A. P. Vinogradov Preliminary data on lunar soil collected by the Luna 20 unmanned spacecraft , 1973 .

[15]  K. Keil,et al.  Oxide minerals in lithic fragments from Luna 20 fines. , 1973 .

[16]  J. Papike,et al.  Petrology of basaltic and monomineralic soil fragments from the Sea of Fertility. , 1972 .

[17]  V. S. Scott,et al.  The Lunar Orbiter Laser Altimeter Investigation on the Lunar Reconnaissance Orbiter Mission , 2010 .

[18]  John B. Adams,et al.  Regional basalt types in the Luna 24 landing area as derived from remote observations , 1976 .

[19]  M. Minnaert Photometry of the Moon , 1961 .

[20]  A. McEwen,et al.  Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview , 2010 .

[21]  J. Head,et al.  Regional stratigraphy and geologic history of Mare Crisium , 1978 .

[22]  K. Keil,et al.  Chemistry and petrology of Luna 24 lithic fragments and <250 µm soils: constraints on the origin of VLT mare basalts. , 1978 .

[23]  G. J. Taylor,et al.  The Luna 20 lithic fragments, and the composition and origin of the lunar highlands , 1973 .

[24]  D. Wilhelms,et al.  Geologic map of the Mare Undarum Quadrangle of the Moon , 1974 .

[25]  David E. Smith,et al.  Orbit determination of the Lunar Reconnaissance Orbiter , 2012, Journal of Geodesy.

[26]  J. J. Gillis,et al.  Major lunar crustal terranes: Surface expressions and crust‐mantle origins , 1999 .

[27]  K. Keil,et al.  Lithic fragments, glasses and chondrules from Luna 16 fines , 1972 .

[28]  T. H. Clark International Geological Congress, Montreal , 1972 .

[29]  G. Wasserburg,et al.  Rb-Sr systematics of Luna 20 and Apollo 16 samples , 1972 .

[30]  J. Anderson,et al.  Modernization of the Integrated Software for Imagers and Spectrometers , 2004 .

[31]  C. D. Hoyle,et al.  Laser ranging to the lost Lunokhod 1 reflector , 2010, 1009.5720.

[32]  D. Bogard,et al.  Noble gases in Luna 24 core soils , 1977 .

[33]  Tsuneo Matsunaga,et al.  Formation age of the lunar crater Giordano Bruno , 2009 .

[34]  R. J. Pike Apparent depth/apparent diameter relation for lunar craters , 1977 .

[35]  M. Cintala,et al.  Emplacement of Fahrenheit craterejecta at the luna-24 site , 1979 .

[36]  S. Murchie,et al.  The geology of 433 Eros , 2002 .

[37]  R. Arvidson,et al.  Horizontal transport of the regolith, modification of features, and erosion rates on the lunar surface , 1975 .

[38]  C. H. Acton,et al.  Ancillary data services of NASA's Navigation and Ancillary Information Facility , 1996 .

[39]  L. Taylor,et al.  Argon‐40‐argon‐39 chronology and petrogenesis along the eastern limb of the Moon from Luna 16, 20 and 24 samples , 2001 .

[40]  Paul G. Lucey,et al.  Clementine images of the lunar sample‐return stations: Refinement of FeO and TiO2 mapping techniques , 1997 .

[41]  A. P. Vinogradov Preliminary data on lunar ground brought to Earth by automatic probe , 1971 .

[42]  G. Wasserburg,et al.  Petrology, chemistry, age and irradiation history of Luna 24 samples , 1978 .