Fractals in Probability and Analysis

This is a mathematically rigorous introduction to fractals which emphasizes examples and fundamental ideas. Building up from basic techniques of geometric measure theory and probability, central topics such as Hausdorff dimension, self-similar sets and Brownian motion are introduced, as are more specialized topics, including Kakeya sets, capacity, percolation on trees and the traveling salesman theorem. The broad range of techniques presented enables key ideas to be highlighted, without the distraction of excessive technicalities. The authors incorporate some novel proofs which are simpler than those available elsewhere. Where possible, chapters are designed to be read independently so the book can be used to teach a variety of courses, with the clear structure offering students an accessible route into the topic.

[1]  A. S. Besicovitch On Fundamental Geometric Properties of Plane Line-Sets , 1964 .

[2]  Steven N. Evans Polar and Nonpolar Sets for a Tree Indexed Process , 1992 .

[3]  Stephen Taylor The Hausdorff α-dimensional measure of Brownian paths in n-space , 1953, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  Painlevé's problem and the semiadditivity of analytic capacity , 2002, math/0204027.

[5]  Y. Peres,et al.  HOW LIKELY IS BUFFON'S NEEDLE TO FALL NEAR A PLANAR CANTOR SET? , 2002 .

[6]  Y. Peres,et al.  Absolute Continuity of Bernoulli Convolutions, A Simple Proof , 1996 .

[7]  P. Erdös A problem about prime numbers and the random walk II , 1961 .

[8]  Mark Braverman,et al.  The rate of convergence of the Walk on Spheres Algorithm , 2008, 0810.3343.

[9]  Otto Frostman Potentiel d'équilibre et capacité des ensembles : Avec quelques applications a la théorie des fonctions , 1935 .

[10]  On the `Mandelbrot set' for a pair of linear maps and complex Bernoulli convolutions , 2002, math/0209229.

[11]  Y. Peres,et al.  Fractals with Positive Length and Zero Buffon Needle Probability , 2003, Am. Math. Mon..

[12]  Jean Bourgain,et al.  On the Dimension of Kakeya Sets and Related Maximal Inequalities , 1999 .

[13]  Helmut Cajar Billingsley dimension in probability spaces , 1981 .

[14]  Christopher J. Bishop,et al.  Harmonic measure and arclength , 1990 .

[15]  R. Durrett Probability: Theory and Examples , 1993 .

[16]  Edwin Hewitt,et al.  Real And Abstract Analysis , 1967 .

[17]  Simon Kochen,et al.  A note on the Borel-Cantelli lemma , 1964 .

[18]  Robin Pemantle,et al.  Galton-Watson Trees with the Same Mean Have the Same Polar Sets , 1995, math/0404053.

[19]  C. Tricot Two definitions of fractional dimension , 1982, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  B. Mandelbrot Intermittent turbulence in self-similar cascades : divergence of high moments and dimension of the carrier , 2004 .

[21]  W. Rudin Real and complex analysis , 1968 .

[22]  D. Schleicher The dynamical fine structure of iterated cosine maps and a dimension paradox , 2004, math/0406255.

[23]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[24]  Representation theoretic rigidity in PSL (2,R) , 1993 .

[25]  T. Kamae,et al.  Van der corput’s difference theorem , 1978 .

[26]  P. Mattila ORTHOGONAL PROJECTIONS, RIESZ CAPACITIES, AND MINKOWSKI CONTENT , 1990 .

[27]  Claire Mathieu,et al.  How to take short cuts , 1992, Discret. Comput. Geom..

[28]  J. G. Wendel,et al.  The exact hausdorff measure of the zero set of a stable process , 1966 .

[29]  P. Móra,et al.  The Measure of Product and Cylinder Sets , 1945 .

[30]  Haar Null Sets and the Consistent Reflection of Non-meagreness , 2011, Canadian Journal of Mathematics.

[31]  Joseph S. B. Mitchell,et al.  Shortest Paths and Networks , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[32]  G. Freud Über trigonometrische Approximation und Fouriersche Reihen , 1962 .

[33]  A. Kechris Classical descriptive set theory , 1987 .

[34]  Sariel Har-Peled Geometric Approximation Algorithms , 2011 .

[35]  Yimin Xiao Packing dimension, Hausdorff dimension and Cartesian product sets , 1996, Mathematical Proceedings of the Cambridge Philosophical Society.

[36]  Almut Burchard,et al.  Holder Regularity and Dimension Bounds for Random Curves , 1998 .

[37]  B. Solomyak On the measure of arithmetic sums of Cantor sets , 1997 .

[38]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[39]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .

[40]  Madhu Sudan,et al.  Extensions to the Method of Multiplicities, with Applications to Kakeya Sets and Mergers , 2013, SIAM J. Comput..

[41]  Charles M. Bishop,et al.  Harmonic measure,L2-estimates and the Schwarzian derivative , 1994 .

[42]  G. Lawler Intersections of random walks , 1991 .

[43]  SOME ALGEBRAIC PROPERTIES OF SMALL SETS , 1975 .

[44]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[45]  R. Kaufman Measures of Hausdorff-type, and Brownian motion , 1972 .

[46]  P. Tukia Hausdorff dimension and quasisymmetric mappings. , 1989 .

[47]  Y. Peres,et al.  THE POWER LAW FOR THE BUFFON NEEDLE PROBABILITY OF THE FOUR-CORNER CANTOR SET , 2008, 0801.2942.

[48]  Immo Hahlomaa,et al.  Menger curvature and Lipschitz parametrizations in metric spaces , 2005 .

[49]  H. Furstenberg Intersections of Cantor Sets and Transversality of Semigroups , 2015 .

[50]  H. McKean A problem about prime numbers and the random walk I , 1961 .

[51]  Tameness of hyperbolic 3-manifolds , 2004, math/0405568.

[52]  Jonas Azzam,et al.  How to take shortcuts in Euclidean space: making a given set into a short quasi-convex set , 2012 .

[53]  S. D. Chatterji Proceedings of the International Congress of Mathematicians , 1995 .

[54]  Linear Approximation Property, Minkowski Dimension, and Quasiconformal Spheres , 1990 .

[55]  Roy Osborne. Davies,et al.  On accessibility of plane sets and differentiation of functions of two real variables , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[56]  R. Lyons Random Walks and Percolation on Trees , 1990 .

[57]  Terence Tao,et al.  The Kakeya set and maximal conjectures for algebraic varieties over finite fields , 2009, 0903.1879.

[58]  C. Colebrook The Hausdorff dimension of certain sets of nonnormal numbers. , 1970 .

[59]  R. Salem,et al.  Lacunary power series and Peano curves , 1945 .

[60]  C. Tricot,et al.  Packing regularity of sets in n-space , 1988, Mathematical Proceedings of the Cambridge Philosophical Society.

[61]  Curtis T. McMullen,et al.  Hausdorff dimension and conformal dynamics, III: Computation of dimension , 1998 .

[62]  On some Problems of Maxima and Minima for the Curve of Constant Breadth and the In-revolvable Curve of the Equilateral Triangle , 1917 .

[63]  Jonathon Peterson Random walk in a random environment , 2010 .

[64]  S. Pfeifer The Geometry Of Fractal Sets , 2016 .

[65]  Joseph S. B. Mitchell,et al.  Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and Related Problems , 1999, SIAM J. Comput..

[66]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[67]  R. Brown XXVII. A brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies , 1828 .

[68]  Thomas Wolff,et al.  Recent work connected with the Kakeya problem , 2007 .

[69]  P. Rippon,et al.  Dimensions of Julia Sets of Meromorphic Functions , 2005 .

[70]  Curtis T. McMullen,et al.  The Hausdorff dimension of general Sierpiński carpets , 1984, Nagoya Mathematical Journal.

[71]  J. Jodeit A note on Fourier multipliers , 1971 .

[72]  R. Daniel Mauldin,et al.  The exact Hausdorff dimension in random recursive constructions , 1988 .

[73]  B. Kleiner,et al.  Rigidity of Schottky sets , 2009, 1102.4381.

[74]  Krzysztof Burdzy,et al.  On Nonincrease of Brownian Motion , 1990 .

[75]  H Robbins,et al.  Complete Convergence and the Law of Large Numbers. , 1947, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Fractional Brownian motion and packing dimension , 1996 .

[77]  S. Kakutani 143. Two-dimensional Brownian Motion and Harmonic Functions , 1944 .

[78]  Terence Tao,et al.  New bounds for Kakeya problems , 2001 .

[79]  Patrick Billingsley,et al.  Hausdorff dimension in probability theory II , 1960 .

[80]  A. Besicovitch,et al.  On the fundamental geometrical properties of linearly measurable plane sets of points (II) , 1938 .

[81]  V. Naibo,et al.  Mixed-Norm Estimates for the k-Plane Transform , 2013 .

[82]  Harry Furstenberg,et al.  Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation , 1967, Mathematical systems theory.

[83]  H. Oh Apollonian circle packings: dynamics and number theory , 2013, Japanese journal of mathematics.

[84]  H. D. Ursell,et al.  Sets of Fractional Dimensions (V) : On Dimensional Numbers of Some continuous Curves , 1937 .

[85]  J. Howroyd On Dimension and on the Existence of Sets of Finite Positive Hausdorff Measure , 1995 .

[86]  C. Pommerenke Boundary Behaviour of Conformal Maps , 1992 .

[87]  The Geometric Traveling Salesman Problem in the Heisenberg Group , 2007 .

[88]  Vesa Ala-Mattila Geometric Characterizations for Patterson-Sullivan Measures of Geometrically Finite Kleinian Groups , 2011 .

[89]  H. Eggleston The fractional dimension of a set defined by decimal properties , 1949 .

[90]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[91]  O. Schramm,et al.  The dimension of the planar Brownian frontier is 4/3 , 2000, math/0010165.

[92]  Steven P. Lalley,et al.  Hausdorff and box dimensions of certain self-affine fractals , 1992 .

[93]  Harry Furstenberg,et al.  Recurrence in Ergodic Theory and Combinatorial Number Theory , 2014 .

[94]  J. Milnor Dynamics in one complex variable , 2000 .

[95]  Families of plane curves having translates in a set of measure zero , 1987 .

[96]  H. Montgomery Harmonic Analysis as found in Analytic Number Theory , 2001 .

[97]  S. Berman Nonincrease almost everywhere of certain measurable functions with applications to stochastic processes , 1983 .

[98]  C. Tricot,et al.  Packing measure, and its evaluation for a Brownian path , 1985 .

[99]  A. Besicovitch On the sum of digits of real numbers represented in the dyadic system. , 1935 .

[100]  V. Strassen An invariance principle for the law of the iterated logarithm , 1964 .

[101]  Sojourn times and the exact Hausdorff measure of the sample path for planar Brownian motion , 1963 .

[102]  J. Verdera,et al.  A geometric proof of the L2 boundedness of the Cauchy integral on Lipschitz graphs , 1995 .

[103]  Packing dimension and Cartesian products , 1996 .

[104]  L. Dubins On a Theorem of Skorohod , 1968 .

[105]  Rick Durrett,et al.  Connectivity properties of Mandelbrot's percolation process , 1988 .

[106]  K. Falconer Dimensions and measures of quasi self-similar sets , 1989 .

[107]  R. Wolpert Lévy Processes , 2000 .

[108]  A. Volberg,et al.  An estimate from below for the Buffon needle probability of the four-corner Cantor set , 2008, 0807.2953.

[109]  Danny Calegari,et al.  Shrinkwrapping and the taming of hyperbolic 3-manifolds : preprint , 2004, math/0407161.

[110]  Christopher J. Bishop,et al.  Hausdorff dimension and Kleinian groups , 1994 .

[111]  K. Falconer Dimensions of Self-affine Sets: A Survey , 2013 .

[112]  Y. Katznelson,et al.  Chromatic Numbers of Cayley Graphs on Z and Recurrence , 2001, Comb..

[113]  Y. Peres,et al.  Restrictions of Brownian motion , 2014, 1406.2789.

[114]  A. Besicovitch,et al.  On the fundamental geometrical properties of linearly measurable plane sets of points , 1928 .

[115]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.

[116]  L. Bachelier,et al.  Théorie de la spéculation , 1900 .

[117]  G. Lawler The Dimension of the Frontier of Planar Brownian Motion , 1996 .

[118]  A. Zdunik Parabolic orbifolds and the dimension of the maximal measure for rational maps , 1990 .

[119]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[120]  T. E. Harris A lower bound for the critical probability in a certain percolation process , 1960, Mathematical Proceedings of the Cambridge Philosophical Society.

[121]  J. Pál Ein Minimumproblem für Ovale , 1921 .

[122]  O. Perron Über Stabilität und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen , 1929 .

[123]  The Hausdorff dimension of the graphs of continuous self-affine functions , 1990 .

[124]  M. Pollicott,et al.  Properties of measures supported on fat Sierpinski carpets , 2006, Ergodic Theory and Dynamical Systems.

[125]  Pablo Shmerkin,et al.  On the Exceptional Set for Absolute Continuity of Bernoulli Convolutions , 2013, 1303.3992.

[126]  Charles Fefferman,et al.  The Multiplier Problem for the Ball , 1971 .

[127]  A. Besicovitch On the definition of tangents to sets of infinite linear measure , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[128]  Christopher J. Bishop,et al.  Conformal welding and Koebe's theorem , 2007 .

[129]  Y. Peres,et al.  Minkowski dimension of Brownian motion with drift , 2012, 1208.0586.

[130]  Harold N. Gabow,et al.  Data structures for weighted matching and nearest common ancestors with linking , 1990, SODA '90.

[131]  H. Masur,et al.  In the Tradition of Ahlfors-Bers, IV , 2007 .

[132]  K. Falconer Sets with Prescribed Projections and Nikodym Sets , 1986 .

[133]  Stephen Taylor The exact Hausdorff measure of the sample path for planar Brownian motion , 1964, Mathematical Proceedings of the Cambridge Philosophical Society.

[134]  B. Solomyak,et al.  Absolute continuity of self-similar measures, their projections and convolutions , 2014, 1406.0204.

[135]  C. A. Rogers,et al.  The analysis of additive set functions in Euclidean space , 1959 .

[136]  Kenneth Falconer,et al.  The Hausdorff dimension of self-affine fractals , 1988, Mathematical Proceedings of the Cambridge Philosophical Society.

[137]  Z. Ciesielski,et al.  First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path , 1962 .

[138]  Yuval Peres,et al.  Two Erdős problems on lacunary sequences: Chromatic number and Diophantine approximation , 2010 .

[139]  Yuval Peres,et al.  Intersecting random translates of invariant Cantor sets , 1991 .

[140]  Hervé Pajot,et al.  Analytic capacity, rectifiability, Menger curvature and the Cauchy integral , 2002 .

[141]  J. Rees Prevalence , 2005, BMJ : British Medical Journal.

[142]  K. Falconer Hausdorff dimension and the exceptional set of projections , 1982 .

[143]  W. Parry Intrinsic Markov chains , 1964 .

[144]  L. Ahlfors,et al.  Lectures on quasiconformal mappings , 1966 .

[145]  B. Hunt The prevalence of continuous nowhere differentiable functions , 1994 .

[146]  J. Kahane,et al.  Théorèmes élémentaires sur les séries de fourier lacunaires , 1965 .

[147]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[148]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[149]  F. Hausdorff Dimension und äußeres Maß , 1918 .

[150]  K. Falconer Projections of random Cantor sets , 1989 .

[151]  Larry Guth,et al.  The endpoint case of the Bennett–Carbery–Tao multilinear Kakeya conjecture , 2008, 0811.2251.

[152]  M. Hochman Dynamics on fractals and fractal distributions , 2010, 1008.3731.

[153]  Wolfgang M. Schmidt,et al.  ON BADLY APPROXIMABLE NUMBERS AND CERTAIN GAMES , 1966 .

[154]  Wendelin Werner,et al.  Values of Brownian intersection exponents, I: Half-plane exponents , 1999 .

[155]  Andrew Ferguson,et al.  The Hausdorff dimension of the projections of self-affine carpets , 2009, 0903.2216.

[156]  C. Bishop Divergence groups have the Bowen property , 2001 .

[157]  M. Bonk Uniformization of Sierpiński carpets in the plane , 2010, 1009.4094.

[158]  F. Cunningham THE KAKEYA PROBLEM FOR SIMPLY CONNECTED AND FOR STAR-SHAPED SETS , 1971 .

[159]  D. Boyd The residual set dimension of the Apollonian packing , 1973 .

[160]  F. Cunningham Three Kakeya Problems , 1974 .

[161]  J. Bourgain Ruzsa’s problem on sets of recurrence , 1987 .

[162]  John Lamperti,et al.  Wiener's test and Markov chains , 1963 .

[163]  Joan Verdera,et al.  The Cauchy integral, analytic capacity, and uniform rectifiability , 1996 .

[164]  On Haar null sets , 1996 .

[165]  I. J. Schoenberg On the Besicovitch-Perron Solution of the Kakeya Problem , 1988 .

[166]  M. Urbanski,et al.  On the Hausdorff dimension of some fractal sets , 1989 .

[167]  The probability that Brownian motion almost contains a line , 1997, math/9701228.

[168]  R. Kaufman On Hausdorff dimension of projections , 1968 .

[169]  D. H. Root The Existence of Certain Stopping Times on Brownian Motion , 1969 .

[170]  Jean Bourgain,et al.  Besicovitch type maximal operators and applications to fourier analysis , 1991 .

[171]  A. Besicovitch On Kakeya's problem and a similar one , 1928 .

[172]  L. J. Savage,et al.  Symmetric measures on Cartesian products , 1955 .

[173]  M. Lévy Le Mouvement Brownien Plan , 1940 .

[174]  Henry Teicher,et al.  On the Law of the Iterated Logarithm , 1974 .

[175]  J. Duistermaat,et al.  Selfsimilarity of "Riemann's nondifferentiable function" , 1994 .

[176]  R. Daniel Mauldin,et al.  Measure and dimension functions: measurability and densities , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.

[177]  L. Carleson Selected Problems on Exceptional Sets , 1998 .

[178]  J. Kahane Some Random Series of Functions , 1985 .

[179]  A. Kolmogoroff Über das Gesetz des iterierten Logarithmus , 1929 .

[180]  B. Volkmann,et al.  Über Hausdorffsche Dimensionen von Mengen, die durch Zifferneigenschaften charakterisiert sind. II , 1953 .

[181]  W. Arveson An Invitation To C*-Algebras , 1976 .

[182]  S. Graf,et al.  Self-similar sets 7, A characterization of self-similar fractals with positive Hausdorff measure , 1992 .

[183]  Michel Loève,et al.  Probability Theory I , 1977 .

[184]  R. Bass,et al.  Cutting Brownian Paths , 1999 .

[185]  S. Drury $L^{p}$ estimates for the $X$-ray transform , 1983 .

[186]  Geometry and ergodic theory of conformal non-recurrent dynamics , 1997, Ergodic Theory and Dynamical Systems.

[187]  R. Lyons The Ising model and percolation on trees and tree-like graphs , 1989 .

[188]  Peter Winkler,et al.  Hunter, Cauchy Rabbit, and Optimal Kakeya Sets , 2012, 1207.6389.

[189]  N. Juillet A counterexample for the geometric traveling salesman problem in the Heisenberg group , 2010 .

[190]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[191]  K. Burdzy Cut Points on Brownian Paths , 1989 .

[192]  Boguslawa Karpinska Hausdorff dimension of the hairs without endpoints for λ exp z , 1999 .

[193]  Wendelin Werner,et al.  Values of Brownian intersection exponents III: Two-sided exponents , 2002 .

[194]  D. Sullivan Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups , 1984 .

[195]  R. Nevanlinna Eindeutige Analytische Funktionen , 1936 .

[196]  C. Bishop Geometric exponents and Kleinian groups , 1997 .

[197]  F. M. Dekking,et al.  Superbranching processes and projections of random Cantor sets , 1988 .

[198]  Two . dimensional Brownian Motion and Harmonic Functions , 2022 .

[199]  Andreas Schief,et al.  Separation properties for self-similar sets , 1994 .

[200]  Martin T. Barlow,et al.  Defining Fractal Subsets of Zd , 1992 .

[201]  M. Hochman,et al.  Local entropy averages and projections of fractal measures , 2009, 0910.1956.

[202]  G. Székely,et al.  Intersections of Traces of Random Walks with Fixed Sets , 1982 .

[203]  B. Stratmann The Exponent of Convergence of Kleinian Groups; on a Theorem of Bishop and Jones , 2004 .

[204]  Fractal Geometry and Stochastics Ii , 2012 .

[205]  Y. Peres,et al.  Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions , 2000 .

[206]  Stephen Taylor,et al.  Multiple points for the sample paths of the symmetric stable process , 1966 .

[207]  A. Khintchine Über eine Klasse linearer diophantischer Approximationen , 1926 .

[208]  A. Besicovitch On existence of subsets of finite measure of sets of infinite measure , 1952 .

[209]  T. Körner Besicovitch via Baire , 2003 .

[210]  S. Krantz Fractal geometry , 1989 .

[211]  R. Daniel Mauldin,et al.  On the Hausdorff dimension of some graphs , 1986 .

[212]  J. Hawkes,et al.  Trees Generated by a Simple Branching Process , 1981 .

[213]  Y. Peres,et al.  Resonance between Cantor sets , 2007, Ergodic Theory and Dynamical Systems.

[214]  K. Weierstrass,et al.  Über Continuirliche Functionen Eines Reellen Arguments, die für Keinen Werth des Letzteren Einen Bestimmten Differentialquotienten Besitzen , 1988 .

[215]  David Preiss,et al.  On the existence of subsets of finite positive packing measure , 1995 .

[216]  G. David,et al.  Opérateurs intégraux singuliers sur certaines courbes du plan complexe , 1984 .

[217]  Claude Tricot,et al.  A new proof for the residual set dimension of the apollonian packing , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.

[218]  S. Smirnov,et al.  D S ] 1 3 O ct 2 00 8 Non-uniform Hyperbolicity in Complex Dynamics by , 2008 .

[219]  Yuval Peres,et al.  Hausdorff dimensions of sofic affine-invariant sets , 1996 .

[220]  K. Falconer,et al.  Projection theorems for box and packing dimensions , 1996, Mathematical Proceedings of the Cambridge Philosophical Society.

[221]  J. Gerver THE DIFFERENTIABILITY OF THE RIEMANN FUNCTION AT CERTAIN RATIONAL MULTIPLES OF pi. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[222]  Greg Markowsky On the expected exit time of planar Brownian motion from simply connected domains , 2011, 1108.1188.

[223]  J. M. Marstrand Packing planes in ℝ 3 , 1979 .

[224]  Positive length but zero analytic capacity , 1970 .

[225]  Haim Kaplan,et al.  On lines, joints, and incidences in three dimensions , 2009, J. Comb. Theory, Ser. A.

[226]  Y. Peres,et al.  Random walks on a tree and capacity in the interval , 1992 .

[228]  S. Smirnov Dimension of quasicircles , 2009, 0904.1237.

[229]  Yuval Peres,et al.  Tree-indexed random walks on groups and first passage percolation , 1994 .

[230]  N. Wiener,et al.  Notes on random functions , 1933 .

[231]  R. Bass Probabilistic Techniques in Analysis , 1994 .

[232]  R. Schul,et al.  Subsets of rectifiable curves in Hilbert space-the analyst’s TSP , 2006, math/0602675.

[233]  W. Feller,et al.  An Introduction to Probability Theory and its Applications, Vol. II , 1967 .

[234]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[235]  Non-rectifiable limit sets of dimension one , 2002 .

[236]  Pertti Mattila,et al.  Geometry of sets and measures in Euclidean spaces , 1995 .

[237]  R. Oberlin Two bounds for the X-ray transform , 2006, math/0610942.

[238]  J. Garnett,et al.  Bounded Analytic Functions , 2006 .

[239]  X. Tolsa Analytic Capacity, the Cauchy Transform, and Non-homogeneous Calderón–Zygmund Theory , 2013 .

[240]  Aleksandr I︠A︡kovlevich Khinchin Asymptotische Gesetze der Wahrscheinlichkeits-Rechnung , 1933 .

[241]  E. Housworth Escape rate for 2-dimensional Brownian motion conditioned to be transient with application to Zygmund functions , 1994 .

[242]  P. Erdös On the Smoothness Properties of a Family of Bernoulli Convolutions , 1940 .

[243]  Boris Solomyak,et al.  Problems on Self-similar Sets and Self-affine Sets: An Update , 2000 .

[244]  Robin Pemantle,et al.  The Dimension of the Brownian Frontier Is Greater Than 1 , 1995 .

[245]  S. Smirnov,et al.  Quasisymmetric distortion spectrum , 2009, 0910.4723.

[246]  K. Falconer Continuity properties of k-plane integrals and Besicovitch sets , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[247]  Mark Braverman,et al.  The complexity of simulating Brownian Motion , 2009, SODA.

[248]  P. A. P. Moran,et al.  Additive functions of intervals and Hausdorff measure , 1946, Mathematical Proceedings of the Cambridge Philosophical Society.

[249]  J. Wilson,et al.  Some weighted norm inequalities concerning the schrödinger operators , 1985 .

[250]  G. A. Hunt SOME THEOREMS CONCERNING BROWNIAN MOTION , 1956 .

[251]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .

[252]  Hausdorff dimension of wiggly metric spaces , 2013, 1303.7305.

[253]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[254]  J. Kahane Lacunary Taylor and Fourier series , 1964 .

[255]  K. Burdzy,et al.  SETS AVOIDED BY BROWNIAN MOTION , 1997, math/9701225.

[256]  R. Pemantle,et al.  Martin capacity for Markov chains , 1995, math/0404054.

[257]  Brian R. Hunt,et al.  The Hausdorff dimension of graphs of Weierstrass functions , 1998 .

[258]  J. M. Marstrand Some Fundamental Geometrical Properties of Plane Sets of Fractional Dimensions , 1954 .

[259]  J. R. Kinney A Thin Set of Circles , 1968 .

[260]  J. Romanowska,et al.  On the dimension of the graph of the classical Weierstrass function , 2013, 1309.3759.

[261]  G. David Unrectictifiable 1-sets have vanishing analytic capacity , 1998 .

[262]  A. Khintchine Asymptotische Gesetze der Wahrscheinlichkeitsrechnung , 1933 .

[263]  LENGTH OF JULIA CURVES , 1995 .

[264]  Bruce Kleiner,et al.  Differentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces with the Radon–Nikodym Property , 2008, 0808.3249.

[265]  E. Lehmann Some Concepts of Dependence , 1966 .

[266]  THE DIFFERENTIABILITY OF THE RIEMANN FUNCTION AT CERTAIN RATIONAL MULTIPLES OF pi. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[267]  J. P. McKean Hausdorff-Besicovitch dimension of Brownian motion paths , 1955 .

[268]  Thomas Wolff,et al.  An improved bound for Kakeya type maximal functions , 1995 .

[269]  G. Parisi Brownian motion , 2005, Nature.

[270]  F. Knight Essentials of Brownian Motion and Diffusion , 1981 .

[271]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[272]  I. Łaba,et al.  From harmonic analysis to arithmetic combinatorics , 2007 .

[273]  A. Besicovitch,et al.  On the Complementary Intervals of a Linear Closed Set of Zero Lebesgue Measure , 1954 .

[274]  Michael Hochman,et al.  On self-similar sets with overlaps and inverse theorems for entropy in $\mathbb{R}^d$ , 2012, 1503.09043.

[275]  Dennis Sullivan,et al.  Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics , 1982 .

[276]  PR ] 1 9 Ja n 20 10 Loop-Erasure of Plane Brownian Motion , 2010 .

[277]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[278]  C. Kenig,et al.  Hardy spaces, $A_\infty$, and singular integrals on chord-arc domains , 1982 .

[279]  Madhu Sudan,et al.  Improved lower bound on the size of Kakeya sets over finite fields , 2008, 0808.2499.

[280]  Peter W. Jones Square functions, Cauchy integrals, analytic capacity, and harmonic measure , 1989 .

[281]  D. Freedman Brownian motion and diffusion , 1971 .

[282]  Zeev Dvir,et al.  On the size of Kakeya sets in finite fields , 2008, 0803.2336.

[283]  Olli Lehto Proceedings of the International Congress of Mathematicians : Helsinki, 1978 , 1980 .

[284]  P. Levy Processus stochastiques et mouvement brownien , 1948 .

[285]  Angelika Mueller,et al.  Principles Of Random Walk , 2016 .

[286]  P. Bickel Some contributions to the theory of order statistics , 1967 .

[287]  G. Lawler,et al.  Nonintersection Exponents for Brownian Paths. II. Estimates and Applications to a Random Fractal , 1990 .

[288]  Analyst ’ s Traveling Salesman Theorems . A Survey , .

[289]  Abubakr Gafar Abdalla,et al.  Probability Theory , 2017, Encyclopedia of GIS.

[290]  J. G. Corput Diophantische Ungleichungen. I. Zur Gleichverteilung Modulo Eins , 1931 .

[291]  E. Perkins,et al.  Levels at which every Brownian excursion is exceptional , 1984 .

[292]  Kellen Petersen August Real Analysis , 2009 .

[293]  M. Bonk,et al.  Quasisymmetric rigidity of square Sierpinski carpets , 2011, 1102.3224.

[294]  Kakeya sets in Cantor directions , 2006, math/0609187.

[295]  On boundary size and conformal mapping , 1989 .

[296]  A. Dvoretzky,et al.  Nonincrease Everywhere of the Brownian Motion Process , 1961 .

[297]  G. Weiss,et al.  On lacunary power series , 1963 .

[298]  Krzysztof Barański,et al.  Hausdorff dimension of the limit sets of some planar geometric constructions , 2007 .

[299]  J. Christensen,et al.  On sets of Haar measure zero in abelian polish groups , 1972 .

[300]  Roy O. Davies,et al.  Some remarks on the Kakeya problem , 1971, Mathematical Proceedings of the Cambridge Philosophical Society.

[301]  G. Hardy Weierstrass’s non-differentiable function , 1916 .

[302]  Paul Erdös,et al.  On a Theorem of Hsu and Robbins , 1949 .

[303]  A. Khintchine Über einen Satz der Wahrscheinlichkeitsrechnung , 1924 .

[304]  Y. Peres,et al.  Probability on Trees and Networks , 2017 .

[305]  D. Khoshnevisan A discrete fractal in , 1994 .

[306]  The Traveling Salesman problem and Harmonic analysis , 1991 .

[307]  Peter W. Jones Rectifiable sets and the Traveling Salesman Problem , 1990 .

[308]  Domination Between Trees and Application to an Explosion Problem , 2004, math/0404044.

[309]  B. Duplantier Brownian Motion, "Diverse and Undulating" , 2007, 0705.1951.

[310]  Immo Hahlomaa CURVATURE INTEGRAL AND LIPSCHITZ PARAMETRIZATION IN 1-REGULAR METRIC SPACES , 2007 .

[311]  Random walks in the group of Euclidean isometries and self-similar measures , 2014, 1405.4426.

[312]  B. Hunt Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces , 1992, math/9210220.

[313]  Mikko Alava,et al.  Branching Processes , 2009, Encyclopedia of Complexity and Systems Science.

[314]  Avi Wigderson,et al.  Kakeya Sets, New Mergers and Old Extractors , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[315]  A. A. Yushkevich,et al.  Strong Markov Processes , 1956 .

[316]  On the Hausdorff dimension of a Julia set with a rationally indifferent periodic point , 1990 .

[317]  C. Pommerenke The integral means spectrum of univalent functions , 1999 .

[318]  G. Lerman Quantifying curvelike structures of measures by using L2 Jones quantities , 2003 .

[319]  Ahlfors-Regular Curves In Metric Spaces , 2006, math/0605454.

[320]  Russell Lyons,et al.  Random Walks, Capacity and Percolation on Trees , 1992 .

[321]  J. Kahane,et al.  Sur certaines martingales de Benoit Mandelbrot , 1976 .

[322]  P. Levitz,et al.  On Brownian flights , 2007, 0704.2362.

[323]  Mikhail Lyubich,et al.  Hausdorff dimension and conformal measures of Feigenbaum Julia sets , 2004, math/0408290.

[324]  M. E. Muller Some Continuous Monte Carlo Methods for the Dirichlet Problem , 1956 .

[325]  R. Kenyon Projecting the one-dimensional Sierpinski gasket , 1997 .