Fractals in Probability and Analysis
暂无分享,去创建一个
[1] A. S. Besicovitch. On Fundamental Geometric Properties of Plane Line-Sets , 1964 .
[2] Steven N. Evans. Polar and Nonpolar Sets for a Tree Indexed Process , 1992 .
[3] Stephen Taylor. The Hausdorff α-dimensional measure of Brownian paths in n-space , 1953, Mathematical Proceedings of the Cambridge Philosophical Society.
[4] Painlevé's problem and the semiadditivity of analytic capacity , 2002, math/0204027.
[5] Y. Peres,et al. HOW LIKELY IS BUFFON'S NEEDLE TO FALL NEAR A PLANAR CANTOR SET? , 2002 .
[6] Y. Peres,et al. Absolute Continuity of Bernoulli Convolutions, A Simple Proof , 1996 .
[7] P. Erdös. A problem about prime numbers and the random walk II , 1961 .
[8] Mark Braverman,et al. The rate of convergence of the Walk on Spheres Algorithm , 2008, 0810.3343.
[9] Otto Frostman. Potentiel d'équilibre et capacité des ensembles : Avec quelques applications a la théorie des fonctions , 1935 .
[10] On the `Mandelbrot set' for a pair of linear maps and complex Bernoulli convolutions , 2002, math/0209229.
[11] Y. Peres,et al. Fractals with Positive Length and Zero Buffon Needle Probability , 2003, Am. Math. Mon..
[12] Jean Bourgain,et al. On the Dimension of Kakeya Sets and Related Maximal Inequalities , 1999 .
[13] Helmut Cajar. Billingsley dimension in probability spaces , 1981 .
[14] Christopher J. Bishop,et al. Harmonic measure and arclength , 1990 .
[15] R. Durrett. Probability: Theory and Examples , 1993 .
[16] Edwin Hewitt,et al. Real And Abstract Analysis , 1967 .
[17] Simon Kochen,et al. A note on the Borel-Cantelli lemma , 1964 .
[18] Robin Pemantle,et al. Galton-Watson Trees with the Same Mean Have the Same Polar Sets , 1995, math/0404053.
[19] C. Tricot. Two definitions of fractional dimension , 1982, Mathematical Proceedings of the Cambridge Philosophical Society.
[20] B. Mandelbrot. Intermittent turbulence in self-similar cascades : divergence of high moments and dimension of the carrier , 2004 .
[21] W. Rudin. Real and complex analysis , 1968 .
[22] D. Schleicher. The dynamical fine structure of iterated cosine maps and a dimension paradox , 2004, math/0406255.
[23] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[24] Representation theoretic rigidity in PSL (2,R) , 1993 .
[25] T. Kamae,et al. Van der corput’s difference theorem , 1978 .
[26] P. Mattila. ORTHOGONAL PROJECTIONS, RIESZ CAPACITIES, AND MINKOWSKI CONTENT , 1990 .
[27] Claire Mathieu,et al. How to take short cuts , 1992, Discret. Comput. Geom..
[28] J. G. Wendel,et al. The exact hausdorff measure of the zero set of a stable process , 1966 .
[29] P. Móra,et al. The Measure of Product and Cylinder Sets , 1945 .
[30] Haar Null Sets and the Consistent Reflection of Non-meagreness , 2011, Canadian Journal of Mathematics.
[31] Joseph S. B. Mitchell,et al. Shortest Paths and Networks , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..
[32] G. Freud. Über trigonometrische Approximation und Fouriersche Reihen , 1962 .
[33] A. Kechris. Classical descriptive set theory , 1987 .
[34] Sariel Har-Peled. Geometric Approximation Algorithms , 2011 .
[35] Yimin Xiao. Packing dimension, Hausdorff dimension and Cartesian product sets , 1996, Mathematical Proceedings of the Cambridge Philosophical Society.
[36] Almut Burchard,et al. Holder Regularity and Dimension Bounds for Random Curves , 1998 .
[37] B. Solomyak. On the measure of arithmetic sums of Cantor sets , 1997 .
[38] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[39] Dudley,et al. Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .
[40] Madhu Sudan,et al. Extensions to the Method of Multiplicities, with Applications to Kakeya Sets and Mergers , 2013, SIAM J. Comput..
[41] Charles M. Bishop,et al. Harmonic measure,L2-estimates and the Schwarzian derivative , 1994 .
[42] G. Lawler. Intersections of random walks , 1991 .
[43] SOME ALGEBRAIC PROPERTIES OF SMALL SETS , 1975 .
[44] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[45] R. Kaufman. Measures of Hausdorff-type, and Brownian motion , 1972 .
[46] P. Tukia. Hausdorff dimension and quasisymmetric mappings. , 1989 .
[47] Y. Peres,et al. THE POWER LAW FOR THE BUFFON NEEDLE PROBABILITY OF THE FOUR-CORNER CANTOR SET , 2008, 0801.2942.
[48] Immo Hahlomaa,et al. Menger curvature and Lipschitz parametrizations in metric spaces , 2005 .
[49] H. Furstenberg. Intersections of Cantor Sets and Transversality of Semigroups , 2015 .
[50] H. McKean. A problem about prime numbers and the random walk I , 1961 .
[51] Tameness of hyperbolic 3-manifolds , 2004, math/0405568.
[52] Jonas Azzam,et al. How to take shortcuts in Euclidean space: making a given set into a short quasi-convex set , 2012 .
[53] S. D. Chatterji. Proceedings of the International Congress of Mathematicians , 1995 .
[54] Linear Approximation Property, Minkowski Dimension, and Quasiconformal Spheres , 1990 .
[55] Roy Osborne. Davies,et al. On accessibility of plane sets and differentiation of functions of two real variables , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.
[56] R. Lyons. Random Walks and Percolation on Trees , 1990 .
[57] Terence Tao,et al. The Kakeya set and maximal conjectures for algebraic varieties over finite fields , 2009, 0903.1879.
[58] C. Colebrook. The Hausdorff dimension of certain sets of nonnormal numbers. , 1970 .
[59] R. Salem,et al. Lacunary power series and Peano curves , 1945 .
[60] C. Tricot,et al. Packing regularity of sets in n-space , 1988, Mathematical Proceedings of the Cambridge Philosophical Society.
[61] Curtis T. McMullen,et al. Hausdorff dimension and conformal dynamics, III: Computation of dimension , 1998 .
[63] Jonathon Peterson. Random walk in a random environment , 2010 .
[64] S. Pfeifer. The Geometry Of Fractal Sets , 2016 .
[65] Joseph S. B. Mitchell,et al. Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and Related Problems , 1999, SIAM J. Comput..
[66] J. Edmonds. Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.
[67] R. Brown. XXVII. A brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies , 1828 .
[68] Thomas Wolff,et al. Recent work connected with the Kakeya problem , 2007 .
[69] P. Rippon,et al. Dimensions of Julia Sets of Meromorphic Functions , 2005 .
[70] Curtis T. McMullen,et al. The Hausdorff dimension of general Sierpiński carpets , 1984, Nagoya Mathematical Journal.
[71] J. Jodeit. A note on Fourier multipliers , 1971 .
[72] R. Daniel Mauldin,et al. The exact Hausdorff dimension in random recursive constructions , 1988 .
[73] B. Kleiner,et al. Rigidity of Schottky sets , 2009, 1102.4381.
[74] Krzysztof Burdzy,et al. On Nonincrease of Brownian Motion , 1990 .
[75] H Robbins,et al. Complete Convergence and the Law of Large Numbers. , 1947, Proceedings of the National Academy of Sciences of the United States of America.
[76] Fractional Brownian motion and packing dimension , 1996 .
[77] S. Kakutani. 143. Two-dimensional Brownian Motion and Harmonic Functions , 1944 .
[78] Terence Tao,et al. New bounds for Kakeya problems , 2001 .
[79] Patrick Billingsley,et al. Hausdorff dimension in probability theory II , 1960 .
[80] A. Besicovitch,et al. On the fundamental geometrical properties of linearly measurable plane sets of points (II) , 1938 .
[81] V. Naibo,et al. Mixed-Norm Estimates for the k-Plane Transform , 2013 .
[82] Harry Furstenberg,et al. Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation , 1967, Mathematical systems theory.
[83] H. Oh. Apollonian circle packings: dynamics and number theory , 2013, Japanese journal of mathematics.
[84] H. D. Ursell,et al. Sets of Fractional Dimensions (V) : On Dimensional Numbers of Some continuous Curves , 1937 .
[85] J. Howroyd. On Dimension and on the Existence of Sets of Finite Positive Hausdorff Measure , 1995 .
[86] C. Pommerenke. Boundary Behaviour of Conformal Maps , 1992 .
[87] The Geometric Traveling Salesman Problem in the Heisenberg Group , 2007 .
[88] Vesa Ala-Mattila. Geometric Characterizations for Patterson-Sullivan Measures of Geometrically Finite Kleinian Groups , 2011 .
[89] H. Eggleston. The fractional dimension of a set defined by decimal properties , 1949 .
[90] W. Hoeffding. Probability Inequalities for sums of Bounded Random Variables , 1963 .
[91] O. Schramm,et al. The dimension of the planar Brownian frontier is 4/3 , 2000, math/0010165.
[92] Steven P. Lalley,et al. Hausdorff and box dimensions of certain self-affine fractals , 1992 .
[93] Harry Furstenberg,et al. Recurrence in Ergodic Theory and Combinatorial Number Theory , 2014 .
[94] J. Milnor. Dynamics in one complex variable , 2000 .
[95] Families of plane curves having translates in a set of measure zero , 1987 .
[96] H. Montgomery. Harmonic Analysis as found in Analytic Number Theory , 2001 .
[97] S. Berman. Nonincrease almost everywhere of certain measurable functions with applications to stochastic processes , 1983 .
[98] C. Tricot,et al. Packing measure, and its evaluation for a Brownian path , 1985 .
[99] A. Besicovitch. On the sum of digits of real numbers represented in the dyadic system. , 1935 .
[100] V. Strassen. An invariance principle for the law of the iterated logarithm , 1964 .
[101] Sojourn times and the exact Hausdorff measure of the sample path for planar Brownian motion , 1963 .
[102] J. Verdera,et al. A geometric proof of the L2 boundedness of the Cauchy integral on Lipschitz graphs , 1995 .
[103] Packing dimension and Cartesian products , 1996 .
[104] L. Dubins. On a Theorem of Skorohod , 1968 .
[105] Rick Durrett,et al. Connectivity properties of Mandelbrot's percolation process , 1988 .
[106] K. Falconer. Dimensions and measures of quasi self-similar sets , 1989 .
[107] R. Wolpert. Lévy Processes , 2000 .
[108] A. Volberg,et al. An estimate from below for the Buffon needle probability of the four-corner Cantor set , 2008, 0807.2953.
[109] Danny Calegari,et al. Shrinkwrapping and the taming of hyperbolic 3-manifolds : preprint , 2004, math/0407161.
[110] Christopher J. Bishop,et al. Hausdorff dimension and Kleinian groups , 1994 .
[111] K. Falconer. Dimensions of Self-affine Sets: A Survey , 2013 .
[112] Y. Katznelson,et al. Chromatic Numbers of Cayley Graphs on Z and Recurrence , 2001, Comb..
[113] Y. Peres,et al. Restrictions of Brownian motion , 2014, 1406.2789.
[114] A. Besicovitch,et al. On the fundamental geometrical properties of linearly measurable plane sets of points , 1928 .
[115] Sanjeev Arora,et al. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.
[116] L. Bachelier,et al. Théorie de la spéculation , 1900 .
[117] G. Lawler. The Dimension of the Frontier of Planar Brownian Motion , 1996 .
[118] A. Zdunik. Parabolic orbifolds and the dimension of the maximal measure for rational maps , 1990 .
[119] Feller William,et al. An Introduction To Probability Theory And Its Applications , 1950 .
[120] T. E. Harris. A lower bound for the critical probability in a certain percolation process , 1960, Mathematical Proceedings of the Cambridge Philosophical Society.
[121] J. Pál. Ein Minimumproblem für Ovale , 1921 .
[122] O. Perron. Über Stabilität und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen , 1929 .
[123] The Hausdorff dimension of the graphs of continuous self-affine functions , 1990 .
[124] M. Pollicott,et al. Properties of measures supported on fat Sierpinski carpets , 2006, Ergodic Theory and Dynamical Systems.
[125] Pablo Shmerkin,et al. On the Exceptional Set for Absolute Continuity of Bernoulli Convolutions , 2013, 1303.3992.
[126] Charles Fefferman,et al. The Multiplier Problem for the Ball , 1971 .
[127] A. Besicovitch. On the definition of tangents to sets of infinite linear measure , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.
[128] Christopher J. Bishop,et al. Conformal welding and Koebe's theorem , 2007 .
[129] Y. Peres,et al. Minkowski dimension of Brownian motion with drift , 2012, 1208.0586.
[130] Harold N. Gabow,et al. Data structures for weighted matching and nearest common ancestors with linking , 1990, SODA '90.
[131] H. Masur,et al. In the Tradition of Ahlfors-Bers, IV , 2007 .
[132] K. Falconer. Sets with Prescribed Projections and Nikodym Sets , 1986 .
[133] Stephen Taylor. The exact Hausdorff measure of the sample path for planar Brownian motion , 1964, Mathematical Proceedings of the Cambridge Philosophical Society.
[134] B. Solomyak,et al. Absolute continuity of self-similar measures, their projections and convolutions , 2014, 1406.0204.
[135] C. A. Rogers,et al. The analysis of additive set functions in Euclidean space , 1959 .
[136] Kenneth Falconer,et al. The Hausdorff dimension of self-affine fractals , 1988, Mathematical Proceedings of the Cambridge Philosophical Society.
[137] Z. Ciesielski,et al. First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path , 1962 .
[138] Yuval Peres,et al. Two Erdős problems on lacunary sequences: Chromatic number and Diophantine approximation , 2010 .
[139] Yuval Peres,et al. Intersecting random translates of invariant Cantor sets , 1991 .
[140] Hervé Pajot,et al. Analytic capacity, rectifiability, Menger curvature and the Cauchy integral , 2002 .
[141] J. Rees. Prevalence , 2005, BMJ : British Medical Journal.
[142] K. Falconer. Hausdorff dimension and the exceptional set of projections , 1982 .
[143] W. Parry. Intrinsic Markov chains , 1964 .
[144] L. Ahlfors,et al. Lectures on quasiconformal mappings , 1966 .
[145] B. Hunt. The prevalence of continuous nowhere differentiable functions , 1994 .
[146] J. Kahane,et al. Théorèmes élémentaires sur les séries de fourier lacunaires , 1965 .
[147] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[148] J. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .
[149] F. Hausdorff. Dimension und äußeres Maß , 1918 .
[150] K. Falconer. Projections of random Cantor sets , 1989 .
[151] Larry Guth,et al. The endpoint case of the Bennett–Carbery–Tao multilinear Kakeya conjecture , 2008, 0811.2251.
[152] M. Hochman. Dynamics on fractals and fractal distributions , 2010, 1008.3731.
[153] Wolfgang M. Schmidt,et al. ON BADLY APPROXIMABLE NUMBERS AND CERTAIN GAMES , 1966 .
[154] Wendelin Werner,et al. Values of Brownian intersection exponents, I: Half-plane exponents , 1999 .
[155] Andrew Ferguson,et al. The Hausdorff dimension of the projections of self-affine carpets , 2009, 0903.2216.
[156] C. Bishop. Divergence groups have the Bowen property , 2001 .
[157] M. Bonk. Uniformization of Sierpiński carpets in the plane , 2010, 1009.4094.
[158] F. Cunningham. THE KAKEYA PROBLEM FOR SIMPLY CONNECTED AND FOR STAR-SHAPED SETS , 1971 .
[159] D. Boyd. The residual set dimension of the Apollonian packing , 1973 .
[160] F. Cunningham. Three Kakeya Problems , 1974 .
[161] J. Bourgain. Ruzsa’s problem on sets of recurrence , 1987 .
[162] John Lamperti,et al. Wiener's test and Markov chains , 1963 .
[163] Joan Verdera,et al. The Cauchy integral, analytic capacity, and uniform rectifiability , 1996 .
[164] On Haar null sets , 1996 .
[165] I. J. Schoenberg. On the Besicovitch-Perron Solution of the Kakeya Problem , 1988 .
[166] M. Urbanski,et al. On the Hausdorff dimension of some fractal sets , 1989 .
[167] The probability that Brownian motion almost contains a line , 1997, math/9701228.
[168] R. Kaufman. On Hausdorff dimension of projections , 1968 .
[169] D. H. Root. The Existence of Certain Stopping Times on Brownian Motion , 1969 .
[170] Jean Bourgain,et al. Besicovitch type maximal operators and applications to fourier analysis , 1991 .
[171] A. Besicovitch. On Kakeya's problem and a similar one , 1928 .
[172] L. J. Savage,et al. Symmetric measures on Cartesian products , 1955 .
[173] M. Lévy. Le Mouvement Brownien Plan , 1940 .
[174] Henry Teicher,et al. On the Law of the Iterated Logarithm , 1974 .
[175] J. Duistermaat,et al. Selfsimilarity of "Riemann's nondifferentiable function" , 1994 .
[176] R. Daniel Mauldin,et al. Measure and dimension functions: measurability and densities , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.
[177] L. Carleson. Selected Problems on Exceptional Sets , 1998 .
[178] J. Kahane. Some Random Series of Functions , 1985 .
[179] A. Kolmogoroff. Über das Gesetz des iterierten Logarithmus , 1929 .
[180] B. Volkmann,et al. Über Hausdorffsche Dimensionen von Mengen, die durch Zifferneigenschaften charakterisiert sind. II , 1953 .
[181] W. Arveson. An Invitation To C*-Algebras , 1976 .
[182] S. Graf,et al. Self-similar sets 7, A characterization of self-similar fractals with positive Hausdorff measure , 1992 .
[183] Michel Loève,et al. Probability Theory I , 1977 .
[184] R. Bass,et al. Cutting Brownian Paths , 1999 .
[185] S. Drury. $L^{p}$ estimates for the $X$-ray transform , 1983 .
[186] Geometry and ergodic theory of conformal non-recurrent dynamics , 1997, Ergodic Theory and Dynamical Systems.
[187] R. Lyons. The Ising model and percolation on trees and tree-like graphs , 1989 .
[188] Peter Winkler,et al. Hunter, Cauchy Rabbit, and Optimal Kakeya Sets , 2012, 1207.6389.
[189] N. Juillet. A counterexample for the geometric traveling salesman problem in the Heisenberg group , 2010 .
[190] A. Einstein. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.
[191] K. Burdzy. Cut Points on Brownian Paths , 1989 .
[192] Boguslawa Karpinska. Hausdorff dimension of the hairs without endpoints for λ exp z , 1999 .
[193] Wendelin Werner,et al. Values of Brownian intersection exponents III: Two-sided exponents , 2002 .
[194] D. Sullivan. Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups , 1984 .
[195] R. Nevanlinna. Eindeutige Analytische Funktionen , 1936 .
[196] C. Bishop. Geometric exponents and Kleinian groups , 1997 .
[197] F. M. Dekking,et al. Superbranching processes and projections of random Cantor sets , 1988 .
[198] Two . dimensional Brownian Motion and Harmonic Functions , 2022 .
[199] Andreas Schief,et al. Separation properties for self-similar sets , 1994 .
[200] Martin T. Barlow,et al. Defining Fractal Subsets of Zd , 1992 .
[201] M. Hochman,et al. Local entropy averages and projections of fractal measures , 2009, 0910.1956.
[202] G. Székely,et al. Intersections of Traces of Random Walks with Fixed Sets , 1982 .
[203] B. Stratmann. The Exponent of Convergence of Kleinian Groups; on a Theorem of Bishop and Jones , 2004 .
[204] Fractal Geometry and Stochastics Ii , 2012 .
[205] Y. Peres,et al. Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions , 2000 .
[206] Stephen Taylor,et al. Multiple points for the sample paths of the symmetric stable process , 1966 .
[207] A. Khintchine. Über eine Klasse linearer diophantischer Approximationen , 1926 .
[208] A. Besicovitch. On existence of subsets of finite measure of sets of infinite measure , 1952 .
[209] T. Körner. Besicovitch via Baire , 2003 .
[210] S. Krantz. Fractal geometry , 1989 .
[211] R. Daniel Mauldin,et al. On the Hausdorff dimension of some graphs , 1986 .
[212] J. Hawkes,et al. Trees Generated by a Simple Branching Process , 1981 .
[213] Y. Peres,et al. Resonance between Cantor sets , 2007, Ergodic Theory and Dynamical Systems.
[214] K. Weierstrass,et al. Über Continuirliche Functionen Eines Reellen Arguments, die für Keinen Werth des Letzteren Einen Bestimmten Differentialquotienten Besitzen , 1988 .
[215] David Preiss,et al. On the existence of subsets of finite positive packing measure , 1995 .
[216] G. David,et al. Opérateurs intégraux singuliers sur certaines courbes du plan complexe , 1984 .
[217] Claude Tricot,et al. A new proof for the residual set dimension of the apollonian packing , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.
[218] S. Smirnov,et al. D S ] 1 3 O ct 2 00 8 Non-uniform Hyperbolicity in Complex Dynamics by , 2008 .
[219] Yuval Peres,et al. Hausdorff dimensions of sofic affine-invariant sets , 1996 .
[220] K. Falconer,et al. Projection theorems for box and packing dimensions , 1996, Mathematical Proceedings of the Cambridge Philosophical Society.
[221] J. Gerver. THE DIFFERENTIABILITY OF THE RIEMANN FUNCTION AT CERTAIN RATIONAL MULTIPLES OF pi. , 1969, Proceedings of the National Academy of Sciences of the United States of America.
[222] Greg Markowsky. On the expected exit time of planar Brownian motion from simply connected domains , 2011, 1108.1188.
[223] J. M. Marstrand. Packing planes in ℝ 3 , 1979 .
[224] Positive length but zero analytic capacity , 1970 .
[225] Haim Kaplan,et al. On lines, joints, and incidences in three dimensions , 2009, J. Comb. Theory, Ser. A.
[226] Y. Peres,et al. Random walks on a tree and capacity in the interval , 1992 .
[228] S. Smirnov. Dimension of quasicircles , 2009, 0904.1237.
[229] Yuval Peres,et al. Tree-indexed random walks on groups and first passage percolation , 1994 .
[230] N. Wiener,et al. Notes on random functions , 1933 .
[231] R. Bass. Probabilistic Techniques in Analysis , 1994 .
[232] R. Schul,et al. Subsets of rectifiable curves in Hilbert space-the analyst’s TSP , 2006, math/0602675.
[233] W. Feller,et al. An Introduction to Probability Theory and its Applications, Vol. II , 1967 .
[234] Jacob T. Schwartz,et al. Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.
[235] Non-rectifiable limit sets of dimension one , 2002 .
[236] Pertti Mattila,et al. Geometry of sets and measures in Euclidean spaces , 1995 .
[237] R. Oberlin. Two bounds for the X-ray transform , 2006, math/0610942.
[238] J. Garnett,et al. Bounded Analytic Functions , 2006 .
[239] X. Tolsa. Analytic Capacity, the Cauchy Transform, and Non-homogeneous Calderón–Zygmund Theory , 2013 .
[240] Aleksandr I︠A︡kovlevich Khinchin. Asymptotische Gesetze der Wahrscheinlichkeits-Rechnung , 1933 .
[241] E. Housworth. Escape rate for 2-dimensional Brownian motion conditioned to be transient with application to Zygmund functions , 1994 .
[242] P. Erdös. On the Smoothness Properties of a Family of Bernoulli Convolutions , 1940 .
[243] Boris Solomyak,et al. Problems on Self-similar Sets and Self-affine Sets: An Update , 2000 .
[244] Robin Pemantle,et al. The Dimension of the Brownian Frontier Is Greater Than 1 , 1995 .
[245] S. Smirnov,et al. Quasisymmetric distortion spectrum , 2009, 0910.4723.
[246] K. Falconer. Continuity properties of k-plane integrals and Besicovitch sets , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.
[247] Mark Braverman,et al. The complexity of simulating Brownian Motion , 2009, SODA.
[248] P. A. P. Moran,et al. Additive functions of intervals and Hausdorff measure , 1946, Mathematical Proceedings of the Cambridge Philosophical Society.
[249] J. Wilson,et al. Some weighted norm inequalities concerning the schrödinger operators , 1985 .
[250] G. A. Hunt. SOME THEOREMS CONCERNING BROWNIAN MOTION , 1956 .
[251] D. R. Fulkerson,et al. Flows in Networks. , 1964 .
[252] Hausdorff dimension of wiggly metric spaces , 2013, 1303.7305.
[253] Ioannis Karatzas,et al. Brownian Motion and Stochastic Calculus , 1987 .
[254] J. Kahane. Lacunary Taylor and Fourier series , 1964 .
[255] K. Burdzy,et al. SETS AVOIDED BY BROWNIAN MOTION , 1997, math/9701225.
[256] R. Pemantle,et al. Martin capacity for Markov chains , 1995, math/0404054.
[257] Brian R. Hunt,et al. The Hausdorff dimension of graphs of Weierstrass functions , 1998 .
[258] J. M. Marstrand. Some Fundamental Geometrical Properties of Plane Sets of Fractional Dimensions , 1954 .
[259] J. R. Kinney. A Thin Set of Circles , 1968 .
[260] J. Romanowska,et al. On the dimension of the graph of the classical Weierstrass function , 2013, 1309.3759.
[261] G. David. Unrectictifiable 1-sets have vanishing analytic capacity , 1998 .
[262] A. Khintchine. Asymptotische Gesetze der Wahrscheinlichkeitsrechnung , 1933 .
[263] LENGTH OF JULIA CURVES , 1995 .
[264] Bruce Kleiner,et al. Differentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces with the Radon–Nikodym Property , 2008, 0808.3249.
[265] E. Lehmann. Some Concepts of Dependence , 1966 .
[266] THE DIFFERENTIABILITY OF THE RIEMANN FUNCTION AT CERTAIN RATIONAL MULTIPLES OF pi. , 1969, Proceedings of the National Academy of Sciences of the United States of America.
[267] J. P. McKean. Hausdorff-Besicovitch dimension of Brownian motion paths , 1955 .
[268] Thomas Wolff,et al. An improved bound for Kakeya type maximal functions , 1995 .
[269] G. Parisi. Brownian motion , 2005, Nature.
[270] F. Knight. Essentials of Brownian Motion and Diffusion , 1981 .
[271] Joseph O'Rourke,et al. Handbook of Discrete and Computational Geometry, Second Edition , 1997 .
[272] I. Łaba,et al. From harmonic analysis to arithmetic combinatorics , 2007 .
[273] A. Besicovitch,et al. On the Complementary Intervals of a Linear Closed Set of Zero Lebesgue Measure , 1954 .
[274] Michael Hochman,et al. On self-similar sets with overlaps and inverse theorems for entropy in $\mathbb{R}^d$ , 2012, 1503.09043.
[275] Dennis Sullivan,et al. Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics , 1982 .
[276] PR ] 1 9 Ja n 20 10 Loop-Erasure of Plane Brownian Motion , 2010 .
[277] Richard Zippel,et al. Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.
[278] C. Kenig,et al. Hardy spaces, $A_\infty$, and singular integrals on chord-arc domains , 1982 .
[279] Madhu Sudan,et al. Improved lower bound on the size of Kakeya sets over finite fields , 2008, 0808.2499.
[280] Peter W. Jones. Square functions, Cauchy integrals, analytic capacity, and harmonic measure , 1989 .
[281] D. Freedman. Brownian motion and diffusion , 1971 .
[282] Zeev Dvir,et al. On the size of Kakeya sets in finite fields , 2008, 0803.2336.
[283] Olli Lehto. Proceedings of the International Congress of Mathematicians : Helsinki, 1978 , 1980 .
[284] P. Levy. Processus stochastiques et mouvement brownien , 1948 .
[285] Angelika Mueller,et al. Principles Of Random Walk , 2016 .
[286] P. Bickel. Some contributions to the theory of order statistics , 1967 .
[287] G. Lawler,et al. Nonintersection Exponents for Brownian Paths. II. Estimates and Applications to a Random Fractal , 1990 .
[288] Analyst ’ s Traveling Salesman Theorems . A Survey , .
[289] Abubakr Gafar Abdalla,et al. Probability Theory , 2017, Encyclopedia of GIS.
[290] J. G. Corput. Diophantische Ungleichungen. I. Zur Gleichverteilung Modulo Eins , 1931 .
[291] E. Perkins,et al. Levels at which every Brownian excursion is exceptional , 1984 .
[292] Kellen Petersen August. Real Analysis , 2009 .
[293] M. Bonk,et al. Quasisymmetric rigidity of square Sierpinski carpets , 2011, 1102.3224.
[294] Kakeya sets in Cantor directions , 2006, math/0609187.
[295] On boundary size and conformal mapping , 1989 .
[296] A. Dvoretzky,et al. Nonincrease Everywhere of the Brownian Motion Process , 1961 .
[297] G. Weiss,et al. On lacunary power series , 1963 .
[298] Krzysztof Barański,et al. Hausdorff dimension of the limit sets of some planar geometric constructions , 2007 .
[299] J. Christensen,et al. On sets of Haar measure zero in abelian polish groups , 1972 .
[300] Roy O. Davies,et al. Some remarks on the Kakeya problem , 1971, Mathematical Proceedings of the Cambridge Philosophical Society.
[301] G. Hardy. Weierstrass’s non-differentiable function , 1916 .
[302] Paul Erdös,et al. On a Theorem of Hsu and Robbins , 1949 .
[303] A. Khintchine. Über einen Satz der Wahrscheinlichkeitsrechnung , 1924 .
[304] Y. Peres,et al. Probability on Trees and Networks , 2017 .
[305] D. Khoshnevisan. A discrete fractal in , 1994 .
[306] The Traveling Salesman problem and Harmonic analysis , 1991 .
[307] Peter W. Jones. Rectifiable sets and the Traveling Salesman Problem , 1990 .
[308] Domination Between Trees and Application to an Explosion Problem , 2004, math/0404044.
[309] B. Duplantier. Brownian Motion, "Diverse and Undulating" , 2007, 0705.1951.
[310] Immo Hahlomaa. CURVATURE INTEGRAL AND LIPSCHITZ PARAMETRIZATION IN 1-REGULAR METRIC SPACES , 2007 .
[311] Random walks in the group of Euclidean isometries and self-similar measures , 2014, 1405.4426.
[312] B. Hunt. Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces , 1992, math/9210220.
[313] Mikko Alava,et al. Branching Processes , 2009, Encyclopedia of Complexity and Systems Science.
[314] Avi Wigderson,et al. Kakeya Sets, New Mergers and Old Extractors , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.
[315] A. A. Yushkevich,et al. Strong Markov Processes , 1956 .
[316] On the Hausdorff dimension of a Julia set with a rationally indifferent periodic point , 1990 .
[317] C. Pommerenke. The integral means spectrum of univalent functions , 1999 .
[318] G. Lerman. Quantifying curvelike structures of measures by using L2 Jones quantities , 2003 .
[319] Ahlfors-Regular Curves In Metric Spaces , 2006, math/0605454.
[320] Russell Lyons,et al. Random Walks, Capacity and Percolation on Trees , 1992 .
[321] J. Kahane,et al. Sur certaines martingales de Benoit Mandelbrot , 1976 .
[322] P. Levitz,et al. On Brownian flights , 2007, 0704.2362.
[323] Mikhail Lyubich,et al. Hausdorff dimension and conformal measures of Feigenbaum Julia sets , 2004, math/0408290.
[324] M. E. Muller. Some Continuous Monte Carlo Methods for the Dirichlet Problem , 1956 .
[325] R. Kenyon. Projecting the one-dimensional Sierpinski gasket , 1997 .