Upper Limits on the 21 cm Epoch of Reionization Power Spectrum from One Night with LOFAR
暂无分享,去创建一个
J. Schaye | S. J. Wijnholds | S. Yatawatta | S. Zaroubi | V. N. Pandey | W. N. Brouw | B. Ciardi | M. Mevius | A. R. Offringa | M. A. Brentjens | F. B. Abdalla | K. M. B. Asad | B. K. Gehlot | A. H. Patil | A. G. de Bruyn | A. Ghosh | F. Abdalla | S. Zaroubi | L. Koopmans | A. Ghosh | G. Mellema | S. Wijnholds | J. Schaye | B. Ciardi | I. Iliev | A. Offringa | S. Yatawatta | V. Jelić | M. Brentjens | G. Harker | V. Pandey | A. Bruyn | E. Chapman | H. Vedantham | W. Brouw | S. Majumdar | K. Kakiichi | D. Vrbanec | M. Mevius | K. Asad | B. Gehlot | L.V.E. Koopmans | M. Hatef | V. Jelic | H. Vedantham | E. Chapman | G. Harker | I. T. Iliev | K. Kakiichi | S. Majumdar | M. B. Silva | G. Mellema | D. Vrbanec | Marta B. Silva | M. Silva | D. Vrbanec | M. Hatef | A. Ghosh | V. Jelic
[1] On using visibility correlations to probe the Hi distribution from the dark ages to the present epoch – I. Formalism and the expected signal , 2004, astro-ph/0406676.
[2] James Aguirre,et al. A SENSITIVITY AND ARRAY-CONFIGURATION STUDY FOR MEASURING THE POWER SPECTRUM OF 21 cm EMISSION FROM REIONIZATION , 2011, 1103.2135.
[3] N. Lomb. Least-squares frequency analysis of unequally spaced data , 1976 .
[4] Jan Noordam,et al. Radio Interferometric Calibration Using The SAGE Algorithm , 2008, DSP 2009.
[5] Saleem Zaroubi,et al. Constraints on reionization from the thermal history of the intergalactic medium , 2002 .
[6] Mohamed-Jalal Fadili,et al. Sparsity and Morphological Diversity in Blind Source Separation , 2007, IEEE Transactions on Image Processing.
[7] L. Koopmans,et al. Scintillation noise power spectrum and its impact on high redshift 21-cm observations , 2015, 1512.00159.
[8] Alexander S. Szalay,et al. Evidence for Reionization at z ∼ 6: Detection of a Gunn-Peterson Trough in a z = 6.28 Quasar , 2001, astro-ph/0108097.
[9] A. R. Whitney,et al. The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2012, Publications of the Astronomical Society of Australia.
[10] Edward J. Wollack,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.
[11] S. Markoff,et al. LOFAR - low frequency array , 2006 .
[12] David F. Moore,et al. PAPER-64 CONSTRAINTS ON REIONIZATION: THE 21 cm POWER SPECTRUM AT z = 8.4 , 2015, 1502.06016.
[13] Jean-Luc Starck,et al. Morphological diversity and sparsity: new insights into multivariate data analysis , 2007, SPIE Optical Engineering + Applications.
[14] M. Morales,et al. Reionization and Cosmology with 21-cm Fluctuations , 2009, 0910.3010.
[15] Melbourne.,et al. Measurements of the UV background at 4.6 < z < 6.4 using the quasar proximity effect , 2010, 1011.5850.
[16] O. Smirnov. Revisiting the radio interferometer measurement equation. I. A full-sky Jones formalism , 2011, 1101.1764.
[17] W. Sargent,et al. A first direct measurement of the intergalactic medium temperature around a quasar at z = 6 , 2010, 1001.3415.
[18] V. Narayanan,et al. A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. II. Discovery of Three Additional Quasars at z > 6 , 2003, astro-ph/0301135.
[19] Judd D. Bowman,et al. The Sensitivity of First-Generation Epoch of Reionization Observatories and Their Potential for Differentiating Theoretical Power Spectra , 2005, astro-ph/0507357.
[20] 21-cm fluctuations from inhomogeneous X-ray heating before reionization , 2006, astro-ph/0607234.
[21] U. Pen,et al. The GMRT Epoch of Reionization experiment: a new upper limit on the neutral hydrogen power spectrum at z≈ 8.6 , 2010, 1006.1351.
[22] Sarod Yatawatta,et al. Distributed Radio Interferometric Calibration , 2015, ArXiv.
[23] N. Konidaris,et al. LINE-EMITTING GALAXIES BEYOND A REDSHIFT OF 7: AN IMPROVED METHOD FOR ESTIMATING THE EVOLVING NEUTRALITY OF THE INTERGALACTIC MEDIUM , 2014, 1404.4632.
[24] Abraham Loeb,et al. 21 cm cosmology in the 21st century , 2011, Reports on progress in physics. Physical Society.
[25] Hao He,et al. Spectral Analysis of Nonuniformly Sampled Data: A New Approach Versus the Periodogram , 2009, IEEE Transactions on Signal Processing.
[26] A. Scaife,et al. A broad-band flux scale for low-frequency radio telescopes , 2012, 1203.0977.
[27] N. Yoshida,et al. The Dark Ages of the Universe and hydrogen reionization , 2014, 1404.7146.
[28] Christopher Hirata,et al. A simulation-calibrated limit on the H i power spectrum from the GMRT Epoch of Reionization experiment , 2013, 1301.5906.
[29] A. H. Patil,et al. Polarization leakage in epoch of reionization windows – I. Low Frequency Array observations of the 3C196 field , 2015 .
[30] Mohamed-Jalal Fadili,et al. Morphological Component Analysis: An Adaptive Thresholding Strategy , 2007, IEEE Transactions on Image Processing.
[31] Martin J. Rees,et al. 21 CENTIMETER TOMOGRAPHY OF THE INTERGALACTIC MEDIUM AT HIGH REDSHIFT , 1996 .
[32] U. Sydney,et al. Polarized foreground removal at low radio frequencies using rotation measure synthesis: uncovering the signature of hydrogen reionization , 2010, 1011.2321.
[33] Judd D. Bowman,et al. FOREGROUND CONTAMINATION IN INTERFEROMETRIC MEASUREMENTS OF THE REDSHIFTED 21 cm POWER SPECTRUM , 2008, 0807.3956.
[34] J. Brinkmann,et al. A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. IV. Discovery of Seven Additional Quasars , 2004, astro-ph/0405138.
[35] Hannes Jensen,et al. Reionization and the Cosmic Dawn with the Square Kilometre Array , 2012, 1210.0197.
[36] Steven Furlanetto,et al. Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe , 2006 .
[37] A. Loeb,et al. A Method for Separating the Physics from the Astrophysics of High-Redshift 21 Centimeter Fluctuations , 2004, astro-ph/0409572.
[38] Saleem Zaroubi,et al. The effect of foreground mitigation strategy on EoR window recovery , 2014, 1408.4695.
[39] A. H. Patil,et al. Systematic biases in low-frequency radio interferometric data due to calibration: the LOFAR-EoR case , 2016, 1605.07619.
[40] Alan E. E. Rogers,et al. Science with the Murchison Widefield Array , 2012, Publications of the Astronomical Society of Australia.
[41] A. H. Patil. Constraining the epoch of reionization with the variance statistic , 2014, 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS).
[42] J. Fadili,et al. SZ and CMB reconstruction using generalized morphological component analysis , 2007, 0712.0588.
[43] J. Roerdink,et al. A morphological algorithm for improving radio-frequency interference detection , 2012, 1201.3364.
[44] J. Pritchard,et al. Distinguishing models of reionization using future radio observations of 21-cm 1-point statistics , 2013, 1312.1342.
[45] Rida T. Farouki,et al. The Bernstein polynomial basis: A centennial retrospective , 2012, Comput. Aided Geom. Des..
[46] N. Udaya Shankar,et al. IMAGING THE EPOCH OF REIONIZATION: LIMITATIONS FROM FOREGROUND CONFUSION AND IMAGING ALGORITHMS , 2011, 1106.1297.
[47] Saleem Zaroubi,et al. Clustered Calibration: An Improvement to Radio Interferometric Direction Dependent Self-Calibration , 2013, ArXiv.
[48] M. Rees,et al. 21 Centimeter Tomography of the Intergalactic Medium at High Redshift , 1996, astro-ph/9608010.
[49] J.-L. Starck,et al. Sparse component separation for accurate cosmic microwave background estimation , 2012, 1206.1773.
[50] James S. Bolton,et al. The observed ionization rate of the intergalactic medium and the ionizing emissivity at z≥ 5: evidence for a photon-starved and extended epoch of reionization , 2007 .
[51] Edward J. Wollack,et al. Three Year Wilkinson Microwave Anistropy Probe (WMAP) Observations: Polarization Analysis , 2006, astro-ph/0603450.
[52] Miguel F. Morales,et al. Toward Epoch of Reionization Measurements with Wide-Field Radio Observations , 2003 .
[53] J. Starck,et al. The scale of the problem: Recovering images of reionization with Generalized Morphological Component Analysis , 2012, 1209.4769.
[54] M. Franx,et al. UV LUMINOSITY FUNCTIONS AT REDSHIFTS z ∼ 4 TO z ∼ 10: 10,000 GALAXIES FROM HST LEGACY FIELDS , 2014, 1403.4295.
[55] Barak A. Pearlmutter,et al. Blind Source Separation by Sparse Decomposition in a Signal Dictionary , 2001, Neural Computation.
[56] Sarod Yatawatta,et al. Efficient computation of prolate spheroidal wave functions in radio astronomical source modeling , 2011, 2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT).
[57] R. Sault,et al. Understanding radio polarimetry. I. Mathematical foundations , 1996 .
[58] Matias Zaldarriaga,et al. Cosmological Parameter Estimation Using 21 cm Radiation from the Epoch of Reionization , 2005, astro-ph/0512263.
[59] J. Schaye,et al. Initial deep LOFAR observations of epoch of reionization windows. I. The north celestial pole , 2013, 1301.1630.
[60] S. Zaroubi,et al. Foreground simulations for the LOFAR-epoch of reionization experiment , 2008, 0804.1130.
[61] D. Kaplan,et al. The EoR sensitivity of the Murchison Widefield Array , 2012, 1204.3111.
[62] R. Bouwens,et al. z ∼ 7 GALAXIES IN THE HUDF: FIRST EPOCH WFC3/IR RESULTS , 2009, 0909.1806.
[63] Edinburgh,et al. COSMIC REIONIZATION AND EARLY STAR-FORMING GALAXIES: A JOINT ANALYSIS OF NEW CONSTRAINTS FROM PLANCK AND THE HUBBLE SPACE TELESCOPE , 2015, 1502.02024.
[64] S. Kazemi,et al. Probing ionospheric structures using the LOFAR radio telescope , 2016, 1606.04683.
[65] Edward J. Wollack,et al. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.
[66] Mervyn J. Lynch,et al. THE PRECISION ARRAY FOR PROBING THE EPOCH OF RE-IONIZATION: EIGHT STATION RESULTS , 2009, 0904.2334.
[67] Daniel A. Mitchell,et al. CHIPS: THE COSMOLOGICAL H i POWER SPECTRUM ESTIMATOR , 2016, 1601.02073.
[68] Saleem Zaroubi,et al. Non-parametric foreground subtraction for 21-cm epoch of reionization experiments , 2009 .
[69] The effect of Galactic foreground subtraction on redshifted 21-cm observations of quasar H ii regions , 2008, 0805.0038.
[70] J. Anderson,et al. The LOFAR radio environment , 2012, 1210.0393.
[71] M. Morales,et al. Calibration requirements for detecting the 21 cm epoch of reionization power spectrum and implications for the SKA , 2016, 1603.00607.
[72] Caltech,et al. Detection of extended He II reionization in the temperature evolution of the intergalactic medium , 2010, 1008.2622.
[73] J. Bolton,et al. New Measurements of the Ionizing Ultraviolet Background over 2 < z < 5 and Implications for Hydrogen Reionization , 2013, 1307.2259.
[74] A. Loeb,et al. Evolution of the 21 cm signal throughout cosmic history , 2008, 0802.2102.
[75] Mark Lacy,et al. The contribution of high-redshift galaxies to cosmic reionization: New results from deep WFC3 imaging of the Hubble Ultra Deep Field , 2009, 0909.2255.
[76] M. Franx,et al. DISCOVERY OF z ∼ 8 GALAXIES IN THE HUBBLE ULTRA DEEP FIELD FROM ULTRA-DEEP WFC3/IR OBSERVATIONS , 2009, 0909.1803.
[77] Max Tegmark. How to measure CMB power spectra without losing information , 1996, astro-ph/9611174.
[78] Chih-Ling Tsai,et al. Bias in nonlinear regression , 1986 .
[79] T. Murphy,et al. wsclean: an implementation of a fast, generic wide-field imager for radio astronomy , 2014, 1407.1943.
[80] S. Zaroubi,et al. Power spectrum extraction for redshifted 21-cm Epoch of Reionization experiments: the LOFAR case , 2010, 1003.0965.
[81] S. Zaroubi,et al. Foregrounds for observations of the cosmological 21 cm line - II. Westerbork observations of the fields around 3C 196 and the North Celestial Pole , 2010, 1002.4177.