Numerical simulation and experimental study of liquid-solid two-phase flow in nozzle of DIA Jet

The velocity of abrasive particles at the nozzle exit of Direct Injection Abrasive (DIA) Jet is a key factor affecting cutting capacity of jet. The powerful Computational Fluid Dynamics (CFD) analysis software Fluent is applied to numerical simulation of liquid-solid two-phase flow in the hard alloy nozzle of different cylindrical section length under a certain conditions. The optimum ratio of diameter to length is obtained when the particle velocities are the largest at the nozzle exit. The rule of velocity distribution of liquid-solid two-phase flow of the optimum nozzle is analyzed. The numerical control cutting machine tool of DIA Jet is adopted to finish cutting experiments on different variety of materials. The analytic results of experiments verify the results of numerical simulation.