Image Analysis and Graphics for Multimedia Presentation

[1]  C T Chen,et al.  Dynamic elastic interpolation for 3D medical image reconstruction from serial cross sections. , 1988, IEEE transactions on medical imaging.

[2]  J. G. Gander,et al.  An introduction to signal detection and estimation , 1990 .

[3]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[4]  Thomas Kailath,et al.  Detection of signals by information theoretic criteria , 1985, IEEE Trans. Acoust. Speech Signal Process..

[5]  J. Rissanen,et al.  Minmax Entropy Estimation of Models for Vector Processes , 1976 .

[6]  Henry Fuchs,et al.  Optimal surface reconstruction from planar contours , 1977, CACM.

[7]  Hideyuki Tamura,et al.  Textural Features Corresponding to Visual Perception , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[9]  Demetri Terzopoulos,et al.  A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis. , 1995, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[10]  Leonid I. Perlovsky,et al.  Maximum likelihood neural networks for sensor fusion and adaptive classification , 1991, Neural Networks.

[11]  D. M. Titterington,et al.  Comments on "Application of the Conditional Population-Mixture Model to Image Segmentation" , 1984, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Sun-Yuan Kung,et al.  Quantitative Analysis of MR Brain Image Sequences by Adaptive Self-Organizing Finite Mixtures , 1998, J. VLSI Signal Process..

[13]  Sun-Yuan Kung,et al.  Quantification and segmentation of brain tissues from MR images: a probabilistic neural network approach , 1998, IEEE Trans. Image Process..

[14]  James C. Bezdek,et al.  A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain , 1992, IEEE Trans. Neural Networks.

[15]  Long-Wen Chang,et al.  Reconstruction of 3D medical images: A nonlinear interpolation technique for reconstruction of 3D medical images , 1991, CVGIP Graph. Model. Image Process..

[16]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[17]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Chin-Tu Chen,et al.  Constraint satisfaction neural networks for image recognition , 1993, Pattern Recognit..

[19]  Alex Pentland,et al.  Modal Matching for Correspondence and Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  T Adali,et al.  Automatic threshold selection using histogram quantization. , 1997, Journal of biomedical optics.

[21]  Michael I. Jordan,et al.  On Convergence Properties of the EM Algorithm for Gaussian Mixtures , 1996, Neural Computation.

[22]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[23]  Huai Li,et al.  Morphological filtering and stochastic modeling-based segmentation of masses on mammographic images , 1996, 1996 IEEE Nuclear Science Symposium. Conference Record.

[24]  Dimitris N. Metaxas,et al.  Shape and Nonrigid Motion Estimation Through Physics-Based Synthesis , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Thomas W. Sederberg,et al.  Conversion of complex contour line definitions into polygonal element mosaics , 1978, SIGGRAPH.

[26]  J. Udupa,et al.  Shape-based interpolation of multidimensional objects. , 1990, IEEE transactions on medical imaging.

[27]  Dimitris N. Metaxas,et al.  Dynamic 3D models with local and global deformations: deformable superquadrics , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[28]  Y. J. Zhang,et al.  A survey on evaluation methods for image segmentation , 1996, Pattern Recognit..

[29]  Tülay Adali,et al.  On the dynamics of the LRE algorithm: a distribution learning approach to adaptive equalization , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[30]  Yianni Attikiouzel,et al.  A probabilistic neural network based image segmentation network for magnetic resonance images , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.

[31]  Benoit M. Dawant,et al.  Morphometric analysis of white matter lesions in MR images: method and validation , 1994, IEEE Trans. Medical Imaging.

[32]  R. Kikinis,et al.  Three-dimensional segmentation of MR images of the head using probability and connectivity. , 1990, Journal of computer assisted tomography.

[33]  D R Haynor,et al.  Partial volume tissue classification of multichannel magnetic resonance images-a mixel model. , 1991, IEEE transactions on medical imaging.

[34]  Atam P. Dhawan,et al.  Segmentation of medical images through competitive learning , 1993 .

[35]  Yue Wang,et al.  Efficient learning of standard finite normal mixtures for image quantification , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[36]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[37]  Tianhu Lei,et al.  A New Stochastic Model-Based Image Segmentation Technique For X-Ray CT Image , 1988, Other Conferences.

[38]  James C. Bezdek,et al.  Validity-guided (re)clustering with applications to image segmentation , 1996, IEEE Trans. Fuzzy Syst..

[39]  David J. Burr,et al.  Elastic Matching of Line Drawings , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  José L. Marroquín,et al.  Measure fields for function approximation , 1995, IEEE Trans. Neural Networks.

[41]  Leonid I. Perlovsky,et al.  Cramer-Rao bounds for the estimation of normal mixtures , 1989, Pattern Recognit. Lett..

[42]  Zhengrong Liang,et al.  Parameter estimation and tissue segmentation from multispectral MR images , 1994, IEEE Trans. Medical Imaging.

[43]  Charles A. Bouman,et al.  Multiple Resolution Segmentation of Textured Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[45]  M Fuderer,et al.  The information content of MR images. , 1988, IEEE transactions on medical imaging.

[46]  Xiao Liu,et al.  Conditional distribution learning with neural networks and its application to channel equalization , 1997, IEEE Trans. Signal Process..

[47]  David N. Kennedy,et al.  Segmentation of Magnetic Resonance Brain Images using Analog Constraint Satisfaction Neural Networks , 1993, DAGM-Symposium.

[48]  James W. Modestino,et al.  A model-fitting approach to cluster validation with application to stochastic model-based image segmentation , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[49]  Tulay Adali,et al.  A blockwise relaxation labeling scheme and its application to edge detection in cardiac MR image sequences , 1998 .

[50]  Andrew W. Fitzgibbon,et al.  An Experimental Comparison of Range Image Segmentation Algorithms , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  F. Girosi,et al.  Some Extensions of the K-Means Algorithm for Image Segmentation and Pattern Classification , 1993 .

[52]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[53]  Priya N. Werahera,et al.  A 3-D reconstruction algorithm for interpolation and extrapolation of planar cross sectional data , 1995, IEEE Trans. Medical Imaging.

[54]  Chin-Tu Chen,et al.  Constraint satisfaction neural networks for image segmentation , 1992, Pattern Recognit..

[55]  Sun-Yuan Kung,et al.  Data mapping by probabilistic modular networks and information-theoretic criteria , 1998, IEEE Trans. Signal Process..

[56]  Maryellen L. Giger,et al.  Automated seeded lesion segmentation on digital mammograms , 1998, IEEE Transactions on Medical Imaging.

[57]  T. Moon The expectation-maximization algorithm , 1996, IEEE Signal Process. Mag..

[58]  Demetri Terzopoulos,et al.  The Computation of Visible-Surface Representations , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[59]  F. Mostofi,et al.  Preliminary results of three‐dimensional reconstruction of previously imaged prostates , 1992, The Prostate. Supplement.

[60]  Anil K. Jain,et al.  Markov random fields : theory and application , 1993 .

[61]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[62]  David S. Ebert,et al.  Statistical modeling and visualization of localized prostate cancer , 1997, Medical Imaging.

[63]  Jianhua Xuan,et al.  Segmentation of magnetic resonance brain image: integrating region growing and edge detection , 1995, Proceedings., International Conference on Image Processing.

[64]  Rama Chellappa,et al.  On the positioning of multisensor imagery for exploitation and target recognition , 1997 .

[65]  Steven W. Zucker,et al.  On the Foundations of Relaxation Labeling Processes , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[66]  George Celniker,et al.  Deformable curve and surface finite-elements for free-form shape design , 1991, SIGGRAPH.

[67]  Jzau-Sheng Lin,et al.  The application of competitive Hopfield neural network to medical image segmentation , 1996, IEEE Trans. Medical Imaging.

[68]  P. Santago,et al.  Quantification of MR brain images by mixture density and partial volume modeling , 1993, IEEE Trans. Medical Imaging.

[69]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[70]  Donald P. Greenberg,et al.  Computer generated images for medical applications , 1978, SIGGRAPH.

[71]  Yue Wang,et al.  A new stochastic model-based image segmentation technique for MR image , 1994, Proceedings of 1st International Conference on Image Processing.

[72]  Eric Keppel,et al.  Approximating Complex Surfaces by Triangulation of Contour Lines , 1975, IBM J. Res. Dev..

[73]  Leonid I. Perlovsky,et al.  Model-based neural network for target detection in SAR images , 1997, IEEE Trans. Image Process..

[74]  Jianhua Xuan,et al.  A deformable surface-spine model for 3-D surface registration , 1997, Proceedings of International Conference on Image Processing.

[75]  A Chiarodo,et al.  National Cancer Institute roundtable on prostate cancer: future research directions. , 1991, Cancer research.

[76]  J. Rissanen A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .

[77]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[78]  Yue Wang,et al.  MR brain image analysis by distribution learning and relaxation labeling , 1996, Proceedings of the 1996 Fifteenth Southern Biomedical Engineering Conference.

[79]  H. Akaike A new look at the statistical model identification , 1974 .

[80]  Ehud Weinstein,et al.  Sequential algorithms for parameter estimation based on the Kullback-Leibler information measure , 1990, IEEE Trans. Acoust. Speech Signal Process..