A hybrid algorithm for solving inverse problems in elasticity

Abstract The paper offers a new approach to handling difficult parametric inverse problems in elasticity and thermo-elasticity, formulated as global optimization ones. The proposed strategy is composed of two phases. In the first, global phase, the stochastic hp-HGS algorithm recognizes the basins of attraction of various objective minima. In the second phase, the local objective minimizers are closer approached by steepest descent processes executed singly in each basin of attraction. The proposed complex strategy is especially dedicated to ill-posed problems with multimodal objective functionals. The strategy offers comparatively low computational and memory costs resulting from a double-adaptive technique in both forward and inverse problem domains. We provide a result on the Lipschitz continuity of the objective functional composed of the elastic energy and the boundary displacement misfits with respect to the unknown constitutive parameters. It allows common scaling of the accuracy of solving forward and inverse problems, which is the core of the introduced double-adaptive technique. The capability of the proposed method of finding multiple solutions is illustrated by a computational example which consists in restoring all feasible Young modulus distributions minimizing an objective functional in a 3D domain of a photo polymer template obtained during step and flash imprint lithography.

[1]  Ward Heylen,et al.  Damage Detection with Parallel Genetic Algorithms and Operational Modes , 2010 .

[2]  Michel Gendreau,et al.  Handbook of Metaheuristics , 2010 .

[3]  Maciej Paszyński,et al.  Unified Modeling Language description of the object-oriented multi-scale adaptive finite element method for Step-and-Flash Imprint Lithography Simulations , 2010 .

[4]  Ewa Grabska,et al.  A Graph Grammar Model of the hp Adaptive Three Dimensional Finite Element Method. Part I , 2012, Fundam. Informaticae.

[5]  R. D. Santos,et al.  Comparing Two Parallel Genetic Algorithms For The Inverse Problem Associated To The Cardiac Bidomain Equations , 2007 .

[6]  Hubert Maigre,et al.  Inverse Problems in Engineering Mechanics , 1994 .

[7]  Sabine Fenstermacher,et al.  Estimation Techniques For Distributed Parameter Systems , 2016 .

[8]  I H Osman,et al.  Meta-Heuristics Theory and Applications , 2011 .

[9]  J. Oden,et al.  Goal-oriented error estimation and adaptivity for the finite element method , 2001 .

[10]  Maciej Paszynski,et al.  Parallel, fully automatic hp-adaptive 3D finite element package , 2006, Engineering with Computers.

[11]  Maciej Paszyński,et al.  Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .

[12]  Robert Schaefer,et al.  Adaptable cache service and application to grid caching , 2010 .

[13]  Leszek Demkowicz,et al.  Fully automatic hp-adaptivity in three dimensions , 2006 .

[14]  I. Babuska,et al.  Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .

[15]  Erick Cantú-Paz,et al.  Efficient and Accurate Parallel Genetic Algorithms , 2000, Genetic Algorithms and Evolutionary Computation.

[16]  Ewa Grabska,et al.  Graph Transformations for Modeling hp-Adaptive Finite Element Method with Triangular Elements , 2008, ICCS.

[17]  Long Chen FINITE ELEMENT METHOD , 2013 .

[18]  Cesare Davini,et al.  A problem in the optimal design of networks under transverse loading , 1990 .

[19]  Ewa Grabska,et al.  Graph Transformation Systems for Modeling Three Dimensional Finite Element Method. Part II , 2015, Fundam. Informaticae.

[20]  J.G. Chase,et al.  LMS-based structural health monitoring methods for the ASCE benchmark problem , 2004, Proceedings of the 2004 American Control Conference.

[21]  S.,et al.  " Goal-Oriented Error Estimation and Adaptivity for the Finite Element Method , 1999 .

[22]  Ewa Grabska,et al.  A Graph Grammar Model of the hp Adaptive Three Dimensional Finite Element Method. Part II , 2012, Fundam. Informaticae.

[23]  J. Z. Zhu,et al.  The finite element method , 1977 .

[24]  M. Vose The Simple Genetic Algorithm , 1999 .

[25]  S. B. Childs,et al.  INVERSE PROBLEMS IN PARTIAL DIFFERENTIAL EQUATIONS. , 1968 .

[26]  Hélène Barucq,et al.  Inversion of Magnetotelluric Measurements Using Multigoal Oriented hp-Adaptivity , 2013, ICCS.

[27]  Matthew Earl Colburn Step and flash imprint lithography : a low-pressure, room-temperature nanoimprint lithograph , 2001 .

[28]  David Pardo,et al.  Parallel multi-frontal solver for p adaptive finite element modeling of multi-physics computational problems , 2010, J. Comput. Sci..

[29]  Yi Wei,et al.  Mesoscale modeling for SFIL simulating polymerization kinetics and densification , 2004, SPIE Advanced Lithography.

[30]  Robert Schaefer,et al.  Graph grammar‐driven parallel partial differential equation solver , 2010, Concurr. Comput. Pract. Exp..

[31]  P. Rocca,et al.  Evolutionary optimization as applied to inverse scattering problems , 2009 .

[32]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[33]  Anindya Ghoshal,et al.  A Structural Neural System for Real-time Health Monitoring of Composite Materials , 2008 .

[34]  Nikolas S. Papageorgiou,et al.  An introduction to nonlinear analysis , 2003 .

[35]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[36]  Gilbert Laporte,et al.  Metaheuristics: A bibliography , 1996, Ann. Oper. Res..

[37]  Barbara Strug,et al.  Using a graph grammar system in the finite element method , 2013, Int. J. Appl. Math. Comput. Sci..

[38]  Leszek Demkowicz,et al.  Parallel, fully automatic hp-adaptive 2d finite element package , 2006 .

[39]  L. Demkowicz One and two dimensional elliptic and Maxwell problems , 2006 .

[40]  Robert Schaefer,et al.  Handling Ambiguous Inverse Problems by the Adaptive Genetic Strategy hp-HGS , 2009, ICCS.

[41]  Robert Schaefer,et al.  Multi-deme, twin adaptive strategy hp-HGS , 2011 .

[42]  I. Babuška,et al.  The h-p version of the finite element method , 1986 .

[43]  B. Guo,et al.  The hp version of the finite element method Part 1 : The basic approximation results , 2022 .

[44]  K. Koper,et al.  Multimodal function optimization with a niching genetic algorithm: A seismological example , 1999, Bulletin of the Seismological Society of America.

[45]  Maciej Paszyński,et al.  On the Modeling of Step-and-Flash Imprint Lithography using Molecular Statics Models , 2005 .

[46]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[47]  Juan M Caicedo,et al.  A novel evolutionary algorithm for identifying multiple alternative solutions in model updating , 2011 .

[48]  Robert Schaefer,et al.  Asymptotic Behavior of hp-HGS (hp-Adaptive Finite Element Method Coupled with the Hierarchic Genetic Strategy) by Solving Inverse Problems , 2008, ICCS.

[49]  Charles R. Farrar,et al.  Machine learning algorithms for damage detection under operational and environmental variability , 2011 .

[50]  Maciej Paszynski On the Parallelization of Self-Adaptive hp-Finite Element Methods Part I. Composite Programmable Graph GrammarModel , 2009, Fundam. Informaticae.

[51]  Robert Schaefer,et al.  Efficient Adaptive Strategy for Solving Inverse Problems , 2007, International Conference on Computational Science.

[52]  Robert Schaefer,et al.  A Parallel Genetic Clustering for Inverse Problems , 1998, PARA.

[53]  A. A. Samarskii,et al.  Numerical Methods for Solving Inverse Problems of Mathematical Physics , 2007 .

[54]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[55]  Tadeusz Burczynski,et al.  Optimization and defect identification using distributed evolutionary algorithms , 2004, Eng. Appl. Artif. Intell..

[56]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[57]  Lea Fleischer,et al.  Regularization of Inverse Problems , 1996 .

[58]  Ewa Grabska,et al.  Graph Transformations for Modeling hp-Adaptive Finite Element Method with Mixed Triangular and Rectangular Elements , 2009, ICCS.

[59]  A. Tikhonov,et al.  Numerical Methods for the Solution of Ill-Posed Problems , 1995 .

[60]  Maciej Paszynski On the Parallelization of Self-Adaptive hp-Finite Element Methods Part II. Partitioning Communication Agglomeration Mapping (PCAM) Analysis , 2009, Fundam. Informaticae.

[61]  John E. Mottershead,et al.  Inverse Methods in Structural Health Monitoring , 2001 .

[62]  Abhishek Singh,et al.  Interactive Genetic Algorithms for Inverse Groundwater Modeling: Issues with Human Fatigue and Prediction Models , 2005 .

[63]  Maciej Paszynski,et al.  Parallel, fully automatic hp-adaptive 3D finite element package , 2007, Engineering with Computers.

[64]  Robert Schaefer,et al.  Genetic Search Reinforced by the Population Hierarchy , 2002, FOGA.

[65]  Nikolaos S. Papageorgiou,et al.  An introduction to nonlinear analysis , 2003 .

[66]  Zdzisław Denkowski,et al.  An Introduction to Nonlinear Analysis: Theory , 2013 .

[67]  Sven Bossuyt,et al.  A Bayesian approach to vibration based structural health monitoring with experimental verification , 2011 .

[68]  Tadeusz Burczyński,et al.  The identification of cracks using boundary elements and evolutionary algorithms , 2001 .