Intermolecular chelation of two serine phosphates by Ca2+ and Mg2+. A theoretical structural investigation.

The modes of interaction of Ca2+ and Mg2+ with 11 pre-selected conformations of serine phosphate (SP) are investigated by using an additive procedure based on ab initio Self Consistent Field computations for the calculation of intermolecular interaction energies. Possible models for the arrangements, SP-Ca2+-SP and SP-Mg2+-SP, are investigated. The comparison between the binding energetics of Mc2+ and Ca2+ to one and two serine phosphates is discussed. It appears that some specific arrangements, SP-M2+-SP (M2+ =Ca2+ or Mg2+), are able to account for the displayed marked selectivity of phosphatidylserine for Ca2+, in keeping with the distinctive features of this complex in model membranes.

[1]  N. Gresh,et al.  On the use of pseudopotentials in molecular calculations , 1978 .

[2]  C. Beevers,et al.  The crystal structure of monocalcium phosphate monohydrate, Ca(H2PO4)2.H2O , 1956 .

[3]  W. Pangborn,et al.  Studies on the mechanism of membrane fusion: evidence for an intermembrane Ca2+-phospholipid complex, synergism with Mg2+, and inhibition by spectrin. , 1979, Biochemistry.

[4]  D. Corbridge The crystal structure of magnesium phosphite hexahydrate, MgHPO3.6H2O , 1956 .

[5]  D. Papahadjopoulos Surface properties of acidic phospholipids: interaction of monolayers and hydrated liquid crystals with uni- and bi-valent metal ions. , 1968, Biochimica et biophysica acta.

[6]  M. Sundaralingam,et al.  Molecular structures of amino acids and peptides. II. A redetermination of the crystal structure of L-O-serine phosphate. A very short phosphate-carboxyl hydrogen bond. , 1970, Acta crystallographica. Section B: Structural crystallography and crystal chemistry.

[7]  D. Sutor The crystal and molecular structure of newberyite, MgHPO4.3H2O , 1967 .

[8]  M. Sundaralihgam DISCUSSION PAPER: MOLECULAR STRUCTURES AND CONFORMATIONS OF THE PHOSPHOLIPIDS AND SPHINGOMYELINS * , 1972, Annals of the New York Academy of Sciences.

[9]  T. Ito,et al.  Calcium-induced phase separations in phosphatidylserine--phosphatidylcholine membranes. , 1974, Biochemistry.

[10]  A. Kvick,et al.  Precision neutron diffraction structure determination of protein and nucleic acid components. III. The crystal and molecular structure of the amino acid α‐glycine , 1972 .

[11]  M. Karnovsky,et al.  The titration of some phosphatides and related compounds in a non-aqueous medium. , 1956, The Journal of biological chemistry.

[12]  B. de Kruijff,et al.  Comparative studies on the effects of pH and Ca2+ on bilayers of various negatively charged phospholipids and their mixtures with phosphatidylcholine. , 1978, Biochimica et biophysica acta.

[13]  B. Pullman,et al.  Cation binding to biomolecules , 1977 .

[14]  K. Jacobson,et al.  Studies on membrane fusion. III. The role of calcium-induced phase changes. , 1977, Biochimica et biophysica acta.

[15]  E. Rojas,et al.  MEMBRANE MODEL: ASSOCIATION OF INORGANIC CATIONS WITH PHOSPHOLIPID MONOLAYERS. , 1965, Biochimica et biophysica acta.

[16]  K. Trueblood,et al.  The crystal structure of calcium thymidylate , 1961 .

[17]  D. Pérahia,et al.  Hydration scheme of uracil and cytosine , 1978 .

[18]  S. Ohki,et al.  Ionic structure of phospholipid membranes, and binding of calcium ions. , 1973, Biochimica et biophysica acta.

[19]  R. Langridge,et al.  The crystal and molecular structure of a calcium salt of guanylyl-3',5'-cytidine (GpC) , 1976 .

[20]  H. Hauser,et al.  Ion‐Binding to Phospholipids , 1976 .

[21]  William A. Goddard,et al.  Ab Initio Effective Potentials for Use in Molecular Calculations , 1972 .

[22]  R. Christoffersen,et al.  Ab initio calculations on large molecules using molecular fragments. Characterization of the zwitterion of glycine , 1973 .

[23]  H. Hauser,et al.  Physical studies of phospholipids. XI. Ca2+ binding to monolayers of phosphatidylserine and phosphatidylinositol. , 1969, Biochimica et biophysica acta.

[24]  W. Pangborn,et al.  Specificity of Ca2+ and Mg2+ binding to phosphatidylserine vesicles and resultant phase changes of bilayer membrane structure. , 1978, Biochimica et biophysica acta.

[25]  Hendrickson Hs,et al.  Stabilities of metal complexes of phospholipids: Ca(II), Mg(II), and Ni(II) complexes of phosphatidylserine and triphosphoinositide. , 1965 .

[26]  H. Hauser,et al.  Differences in the interaction of inorganic and organic (hydrophobic) cations with phosphatidylserine membranes. , 1975, Biochimica et biophysica acta.

[27]  K. Jacobson,et al.  Phase transitions and phase separations in phospholipid membranes induced by changes in temperature, pH, and concentration of bivalent cations. , 1975, Biochemistry.

[28]  J L Sussman,et al.  RNA-ligant interactions. (I) Magnesium binding sites in yeast tRNAPhe. , 1977, Nucleic acids research.

[29]  G. Langlet FIGATOM: a new graphic program for stereoscopic crystal structure illustrations , 1972 .

[30]  W. Goddard,et al.  Ab initio effective potentials for use in molecular quantum mechanics , 1974 .