Pseudo-Likelihoods for Bayesian Inference

The interplay between Bayesian and frequentist inference can play a remarkable role in order to address some theoretical and computational drawbacks, due to the complexity or misspecification of the model, or to the presence of many nuisance parameters. In this respect, in this paper we review the properties and applications of the so-called pseudo-posterior distributions, i.e., posterior distributions derived from the combination of a pseudo-likelihood function with suitable prior information. In particular, we illustrate the various notions of pseudo-likelihood highlighting their use in the Bayesian framework. Moreover, we show the simple but effective application of pseudo-posterior distributions in three challenging examples.

[1]  Gail Gong,et al.  Pseudo Maximum Likelihood Estimation: Theory and Applications , 1981 .

[2]  W. Racugno,et al.  Analysis of the linear correlation coefficient using pseudo-likelihoods , 1992 .

[3]  L. Ventura,et al.  Quasi-likelihood fromM-estimators: A numerical comparison with empirical likelihood , 2002 .

[4]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[5]  P. Green Penalized Likelihood for General Semi-Parametric Regression Models. , 1987 .

[6]  Maengseok Noh,et al.  H-likelihood: problems and solutions , 2007, Stat. Comput..

[7]  Luca Greco,et al.  A weighted strategy to handle likelihood uncertainty in Bayesian inference , 2013, Comput. Stat..

[8]  D. Cox,et al.  Asymptotic Analysis of Penalized Likelihood and Related Estimators , 1990 .

[9]  Bayesian Analysis in Regression Models Using Pseudo-Likelihoods , 2010 .

[10]  T. Mathew,et al.  Higher order inference for the consensus mean in inter‐laboratory studies , 2011, Biometrical journal. Biometrische Zeitschrift.

[11]  L. Ventura,et al.  A Matching Prior for the Shape Parameter of the Skew‐Normal Distribution , 2012 .

[12]  A. Rukhin,et al.  Maximum Likelihood Analysis for Heteroscedastic One‐Way Random Effects ANOVA in Interlaboratory Studies , 1999, Biometrics.

[13]  S. R. Chamberlin,et al.  Stable and invariant adjusted directed likelihoods , 1994 .

[14]  James O. Berger,et al.  The interplay of Bayesian and frequentist analysis , 2004 .

[15]  T. Severini Likelihood Methods in Statistics , 2001 .

[16]  Laura Ventura,et al.  Approximate Bayesian computation with modified log-likelihood ratios , 2014 .

[17]  R. Mukerjee,et al.  Bayesian and frequentist confidence intervals via adjusted likelihoods under prior specification on the interest parameter , 2009 .

[18]  O. Barndorff-Nielsen Quasi profile and directed likelihoods from estimating functions , 1995, Annals of the Institute of Statistical Mathematics.

[19]  Xiao-Li Meng,et al.  Decoding the H-likelihood , 2009, 1010.0810.

[20]  Zhiyi Chi,et al.  Approximating likelihoods for large spatial data sets , 2004 .

[21]  L. Ventura,et al.  Modified quasi-profile likelihoods from estimating functions , 2008 .

[22]  L. Ventura,et al.  Default prior distributions from quasi- and quasi-profile likelihoods , 2010 .

[23]  David R. Cox,et al.  Regression models and life tables (with discussion , 1972 .

[24]  Laura Ventura,et al.  Recent advances on Bayesian inference for $P(X < Y)$ , 2011 .

[25]  Accurate and efficient construction of bootstrap likelihoods , 1995 .

[26]  David J. Nott,et al.  A pairwise likelihood approach to analyzing correlated binary data , 2000 .

[27]  N. Lazar Bayesian empirical likelihood , 2003 .

[28]  Erlis Ruli,et al.  Higher-order Bayesian Approximations for Pseudo-posterior Distributions , 2016, Commun. Stat. Simul. Comput..

[29]  N. Reid,et al.  Assessing Sensitivity to Priors Using Higher Order Approximations , 2010 .

[30]  Laura Ventura,et al.  Objective Bayesian higher-order asymptotics in models with nuisance parameters , 2013, Comput. Stat. Data Anal..

[31]  Luigi Pace,et al.  Adjustments of the profile likelihood from a new perspective , 2006 .

[32]  Nancy Reid,et al.  Strong matching of frequentist and Bayesian parametric inference , 2002 .

[33]  A. Davison,et al.  Bayesian Inference from Composite Likelihoods, with an Application to Spatial Extremes , 2009, 0911.5357.

[34]  Roger L. Berger Comment on Perlman and Wu, “The Emperor’s new tests” (with rejoinder by authors) , 1999 .

[35]  E. Ruli,et al.  Marginal Posterior Simulation via Higher-order Tail Area Approximations , 2012, 1212.1038.

[36]  Feifang Hu,et al.  The weighted likelihood , 2002 .

[37]  M. Fassan,et al.  Epithelial–mesenchymal transition in malignant mesothelioma , 2012, Modern Pathology.

[38]  Thomas A. Severini,et al.  On the relationship between Bayesian and non-Bayesian elimination of nuisance parameters , 1999 .

[39]  Laura Ventura,et al.  Robust likelihood functions in Bayesian inference , 2008 .

[40]  Jinfang Wang Quadratic Artificial Likelihood Functions Using Estimating Functions , 2006 .

[41]  Anthony C. Davison,et al.  Applied Asymptotics: Case Studies in Small-Sample Statistics , 2007 .

[42]  Rahul Mukerjee,et al.  Probability matching property of adjusted likelihoods , 2006 .

[43]  L. Ventura,et al.  Higher order asymptotic computation of Bayesian significance tests for precise null hypotheses in the presence of nuisance parameters , 2015 .

[44]  Laura Ventura,et al.  Prior Distributions From Pseudo-Likelihoods in the Presence of Nuisance Parameters , 2009 .

[45]  Lu Lin Quasi Bayesian likelihood , 2006 .

[46]  Gianfranco Adimari On the Empirical Likelihood Ratio for Smooth Functions of M‐functionals , 1997 .

[47]  D. Cox,et al.  A note on pseudolikelihood constructed from marginal densities , 2004 .

[48]  Yongdai Kim,et al.  Bayesian partial likelihood approach for tied observations , 2009 .

[49]  J. Monahan,et al.  Proper likelihoods for Bayesian analysis , 1992 .

[50]  Joseph G. Ibrahim,et al.  Posterior propriety and computation for the Cox regression model with applications to missing covariates , 2006 .

[51]  B. Efron Bayes and likelihood calculations from confidence intervals , 1993 .

[52]  L. Ventura,et al.  Quasi-Profile Log Likelihoods for Unbiased Estimating Functions , 2002 .

[53]  J. Nelder,et al.  Hierarchical Generalized Linear Models , 1996 .

[54]  Alec Stephenson,et al.  An extended Gaussian max-stable process model for spatial extremes , 2009 .

[55]  R. Wolpert,et al.  Integrated likelihood methods for eliminating nuisance parameters , 1999 .

[56]  Laura Ventura,et al.  Bayesian composite marginal likelihoods , 2011 .

[57]  Marianthi Markatou,et al.  Weighted Likelihood Equations with Bootstrap Root Search , 1998 .

[58]  Joseph G. Ibrahim,et al.  A Bayesian justification of Cox's partial likelihood , 2003 .

[59]  Susanne M. Schennach,et al.  Bayesian exponentially tilted empirical likelihood , 2005 .

[60]  L. Ventura,et al.  Likelihood based discrimination between separate scale and regression models. , 2006 .

[61]  J. F. Bjørnstad Predictive Likelihood: A Review , 1990 .

[62]  Dongchu Sun,et al.  A matching prior based on the modified profile likelihood in a generalized Weibull stress‐strength model , 2013 .

[63]  P. McCullagh Quasi-Likelihood Functions , 1983 .

[64]  R. Mukerjee,et al.  Probability Matching Priors: Higher Order Asymptotics , 2004 .

[65]  N. Reid,et al.  AN OVERVIEW OF COMPOSITE LIKELIHOOD METHODS , 2011 .

[66]  Adelchi Azzalini,et al.  Maximum likelihood estimation of order m for stationary stochastic processes , 1983 .

[67]  C. Small,et al.  A projected likelihood function for semiparametric models , 1992 .

[68]  R. Butler Approximate predictive pivots and densities , 1989 .

[69]  N. Reid,et al.  Some aspects of matching priors , 2003 .

[70]  Robust Bayesian Analysis in Analysis of Variance and the χ2‐Test by Using Marginal Likelihoods , 1994 .

[71]  J. C. van Houwelingen,et al.  Logistic Regression for Correlated Binary Data , 1994 .

[72]  Joseph G. Ibrahim,et al.  Bayesian Survival Analysis , 2004 .

[73]  Erlis Ruli,et al.  Approximate Bayesian computation with composite score functions , 2013, Stat. Comput..

[74]  Julio Michael Stern,et al.  Evidence and Credibility: Full Bayesian Significance Test for Precise Hypotheses , 1999, Entropy.