Longitudinal diffusion MRI analysis using Segis-Net: A single-step deep-learning framework for simultaneous segmentation and registration

This work presents a single-step deep-learning framework for longitudinal image analysis, coined Segis-Net. To optimally exploit information available in longitudinal data, this method concurrently learns a multi-class segmentation and nonlinear registration. Segmentation and registration are modeled using a convolutional neural network and optimized simultaneously for their mutual benefit. An objective function that optimizes spatial correspondence for the segmented structures across time-points is proposed. We applied Segis-Net to the analysis of white matter tracts from N=8045 longitudinal brain MRI datasets of 3249 elderly individuals. Segis-Net approach showed a significant increase in registration accuracy, spatio-temporal segmentation consistency, and reproducibility comparing with two multistage pipelines. This also led to a significant reduction in the sample-size that would be required to achieve the same statistical power in analyzing tract-specific measures. Thus, we expect that Segis-Net can serve as a new reliable tool to support longitudinal imaging studies to investigate macroand microstructural brain changes over time.

[1]  Maxime Sermesant,et al.  SVF-Net: Learning Deformable Image Registration Using Shape Matching , 2017, MICCAI.

[2]  Nikos Paragios,et al.  AtlasNet: Multi-atlas Non-linear Deep Networks for Medical Image Segmentation , 2018, MICCAI.

[3]  D. Mantini,et al.  Exploring quantitative group-wise differentiation of Alzheimer’s disease and behavioural variant frontotemporal dementia using tract-specific microstructural white matter and functional connectivity measures at multiple time points , 2019, European Radiology.

[4]  Wiro J. Niessen,et al.  Neuro4Neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging , 2020, NeuroImage.

[5]  Marc Niethammer,et al.  DeepAtlas: Joint Semi-Supervised Learning of Image Registration and Segmentation , 2019, MICCAI.

[6]  Nikos Paragios,et al.  Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation , 2020, Frontiers in Computational Neuroscience.

[7]  Karl J. Friston,et al.  Unified segmentation , 2005, NeuroImage.

[8]  Thomas R. Barrick,et al.  White matter structural decline in normal ageing: A prospective longitudinal study using tract-based spatial statistics , 2010, NeuroImage.

[9]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[10]  Bo Li,et al.  Reproducible White Matter Tract Segmentation Using 3D U-Net on a Large-scale DTI Dataset , 2018, MLMI@MICCAI.

[11]  Oscar Camara,et al.  Generalized Overlap Measures for Evaluation and Validation in Medical Image Analysis , 2006, IEEE Transactions on Medical Imaging.

[12]  Max A. Viergever,et al.  Adaptive Stochastic Gradient Descent Optimisation for Image Registration , 2009, International Journal of Computer Vision.

[13]  Sotirios A. Tsaftaris,et al.  Medical Image Computing and Computer Assisted Intervention , 2017 .

[14]  Bruce Fischl,et al.  Within-subject template estimation for unbiased longitudinal image analysis , 2012, NeuroImage.

[15]  Wiro J. Niessen,et al.  MR brain image analysis in dementia: From quantitative imaging biomarkers to ageing brain models and imaging genetics , 2016, Medical Image Anal..

[16]  Andrew Zisserman,et al.  Spatial Transformer Networks , 2015, NIPS.

[17]  Bruce Fischl,et al.  Joint reconstruction of white-matter pathways from longitudinal diffusion MRI data with anatomical priors , 2016, NeuroImage.

[18]  Wiro J. Niessen,et al.  Multi-spectral brain tissue segmentation using automatically trained k-Nearest-Neighbor classification , 2007, NeuroImage.

[19]  Wiro J. Niessen,et al.  The Rotterdam Scan Study: design and update up to 2012 , 2011, European Journal of Epidemiology.

[20]  Christos Davatzikos,et al.  Joint Segmentation and Deformable Registration of Brain Scans Guided by a Tumor Growth Model , 2011, MICCAI.

[21]  Wiro J. Niessen,et al.  Towards Segmentation and Spatial Alignment of the Human Embryonic Brain Using Deep Learning for Atlas-Based Registration , 2020, WBIR.

[22]  Siamak Khorram,et al.  A feature-based image registration algorithm using improved chain-code representation combined with invariant moments , 1999, IEEE Trans. Geosci. Remote. Sens..

[23]  Wiro J Niessen,et al.  Global and focal white matter integrity in breast cancer survivors 20 years after adjuvant chemotherapy , 2014, Human brain mapping.

[24]  Andrew L. Maas Rectifier Nonlinearities Improve Neural Network Acoustic Models , 2013 .

[25]  Marc Modat,et al.  Label-driven weakly-supervised learning for multimodal deformarle image registration , 2017, 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).

[26]  Daniel Rueckert,et al.  Joint Learning of Motion Estimation and Segmentation for Cardiac MR Image Sequences , 2018, MICCAI.

[27]  Brian B. Avants,et al.  High-Dimensional Spatial Normalization of Diffusion Tensor Images Improves the Detection of White Matter Differences: An Example Study Using Amyotrophic Lateral Sclerosis , 2007, IEEE Transactions on Medical Imaging.

[28]  Wiro J. Niessen,et al.  Changes in Normal-Appearing White Matter Precede Development of White Matter Lesions , 2013, Stroke.

[29]  Torsten Rohlfing,et al.  Longitudinal Study of Callosal Microstructure in the Normal Adult Aging Brain Using Quantitative DTI Fiber Tracking , 2010, Developmental neuropsychology.

[30]  Nikos Paragios,et al.  U-ReSNet: Ultimate Coupling of Registration and Segmentation with Deep Nets , 2019, MICCAI.

[31]  Marc Modat,et al.  Diffusion Tensor Driven Image Registration: A Deep Learning Approach , 2020, WBIR.

[32]  Wiro J. Niessen,et al.  Learning unbiased registration and joint segmentation: evaluation on longitudinal diffusion MRI , 2020, ArXiv.

[33]  Brenda C T Kieboom,et al.  Objectives, design and main findings until 2020 from the Rotterdam Study , 2020, European Journal of Epidemiology.

[34]  Wiro J. Niessen,et al.  Tract-specific white matter degeneration in aging: The Rotterdam Study , 2015, Alzheimer's & Dementia.

[35]  Sterling C. Johnson,et al.  Longitudinal diffusion tensor imaging and neuropsychological correlates in traumatic brain injury patients , 2012, Front. Hum. Neurosci..

[36]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[37]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[38]  Jan Sijbers,et al.  ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data , 2009 .

[39]  Max A. Viergever,et al.  elastix: A Toolbox for Intensity-Based Medical Image Registration , 2010, IEEE Transactions on Medical Imaging.

[40]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[41]  P. Diggle Analysis of Longitudinal Data , 1995 .

[42]  Daguang Xu,et al.  NeurReg: Neural Registration and Its Application to Image Segmentation , 2019, 2020 IEEE Winter Conference on Applications of Computer Vision (WACV).

[43]  J. R. Landis,et al.  An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. , 1977, Biometrics.

[44]  Peter F. Neher,et al.  TractSeg - Fast and accurate white matter tract segmentation , 2018, NeuroImage.

[45]  J. Alison Noble,et al.  MAP MRF joint segmentation and registration of medical images , 2003, Medical Image Anal..

[46]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[47]  Marc Modat,et al.  An unbiased longitudinal analysis framework for tracking white matter changes using diffusion tensor imaging with application to Alzheimer's disease , 2013, NeuroImage.

[48]  Marleen de Bruijne,et al.  Semi-supervised Medical Image Segmentation via Learning Consistency Under Transformations , 2019, MICCAI.

[49]  Trevor Darrell,et al.  Learning Features by Watching Objects Move , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[50]  Ming-Hsuan Yang,et al.  SegFlow: Joint Learning for Video Object Segmentation and Optical Flow , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[51]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Krystian Mikolajczyk,et al.  Deep Segmentation and Registration in X-Ray Angiography Video , 2018, BMVC.

[53]  Stefan Klein,et al.  Nonrigid registration of dynamic medical imaging data using nD + t B-splines and a groupwise optimization approach , 2011, Medical Image Anal..

[54]  F. Crick,et al.  Backwardness of human neuroanatomy , 1993, Nature.

[55]  W. Eric L. Grimson,et al.  A Bayesian model for joint segmentation and registration , 2006, NeuroImage.

[56]  D. Le Bihan,et al.  Diffusion tensor imaging: Concepts and applications , 2001, Journal of magnetic resonance imaging : JMRI.

[57]  Wiro J Niessen,et al.  White Matter Degeneration with Aging: Longitudinal Diffusion MR Imaging Analysis. , 2016, Radiology.

[58]  C. Lebel,et al.  Longitudinal Development of Human Brain Wiring Continues from Childhood into Adulthood , 2011, The Journal of Neuroscience.

[59]  Lian van der Krieke,et al.  Temporal Dynamics of Health and Well-Being: A Crowdsourcing Approach to Momentary Assessments and Automated Generation of Personalized Feedback , 2016, Psychosomatic medicine.

[60]  Anthony J. Yezzi,et al.  A variational framework for integrating segmentation and registration through active contours , 2003, Medical Image Anal..

[61]  Christiane S. Rohr,et al.  Early childhood development of white matter fiber density and morphology , 2020, NeuroImage.

[62]  Yoshua Bengio,et al.  Understanding the difficulty of training deep feedforward neural networks , 2010, AISTATS.

[63]  Mert R. Sabuncu,et al.  VoxelMorph: A Learning Framework for Deformable Medical Image Registration , 2018, IEEE Transactions on Medical Imaging.

[64]  Michael I. Miller,et al.  Diffeomorphic Matching of Diffusion Tensor Images , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[65]  Bruce Fischl,et al.  Combined Volumetric and Surface Registration , 2009, IEEE Transactions on Medical Imaging.

[66]  Stefan Klein,et al.  Improving alignment in Tract-based spatial statistics: Evaluation and optimization of image registration , 2013, NeuroImage.

[67]  Wiro Niessen,et al.  A hybrid deep learning framework for integrated segmentation and registration: evaluation on longitudinal white matter tract changes , 2019, MICCAI.

[68]  Nikos Paragios,et al.  Concurrent tumor segmentation and registration with uncertainty-based sparse non-uniform graphs , 2014, Medical Image Anal..

[69]  L. R. Dice Measures of the Amount of Ecologic Association Between Species , 1945 .

[70]  Christiane S. Rohr,et al.  Early childhood development of white matter fiber density and morphology , 2019, NeuroImage.