Stereochemical studies on nucleic acid analogues. I. Conformations of alpha-nucleosides and alpha-nucleotides: interconversion of sugar puckers via O4'-exo.

The preferred conformations of ribo and deoxyribo alpha-nucleosides and alpha-nucleotides, the stereoisomers of the naturally occurring beta-isomers, are worked out by minimizing the conformational energy as a function of all the major parameters including the sugar ring conformations along the pseudorotation path. The results of the studies bring out certain distinct conformational features that are at variance with their beta counterparts. The range of glycosyl conformations are found to be not only quite restricted here but favor predominantly the anti conformation. The syn glycosyl conformation for the entire region of P values are found to be energetically less favorable, with the barrier to anti in equilibrium with syn interconversion being higher especially in alpha-ribonucleosides. The energetically preferred range of pseudorotation phase angles (P) is also considerably restricted and P values corresponding to the C1'-exo range of sugars are highly unfavorable for alpha-nucleosides, in sharp contrast to the broad range of sugar ring conformations favored by beta-isomers. While both trans congruent to 180 degrees and skew congruent to 270 degrees conformations around the C3'-O3' (phi') bond are favored for alpha-3'-nucleotides with deoxyribose sugars, ribose sugars seem to favor only the skew values of phi'. Most interestingly and in sharp contrast to beta-stereoisomers, an energy barrier is encountered at P values corresponding to O4'-endo sugars. This suggests that the possible sugar pucker interconversion between C2'-endo/C3'-exo and C3'-endo/C2'-exo in alpha-anomers could take place only through the O4'-exo region. Likewise the possible path of anti in equilibrium with syn interconversion in alpha-nucleosides is not via high anti, in sharp contrast to beta-nucleosides. These observations should be borne in mind while assigning the sugar ring conformers in alpha-nucleosides and those containing them from nmr investigations. Comparison of the results with beta-anomers seem to suggest on the whole a lack of conformational variability or the restricted nature of alpha-stereoisomers. This could be one of the reasons for its nonselection in the naturally occurring nucleic acids.