On Agemi-type structural conditions for a system of semilinear wave equations

We consider a two-component system of cubic semilinear wave equations in two space dimensions satisfying the Agemi-type structural condition (Ag) but violating (Ag$_0$) and (Ag$_+$). For this system, we show that small amplitude solutions are asymptotically free as $t\to +\infty$.

[1]  K. Hidano,et al.  Global Existence for a System of Quasi-Linear Wave Equations in 3D Satisfying the Weak Null Condition , 2017, 1706.00216.

[2]  Chunhua Li,et al.  On Schrödinger systems with cubic dissipative nonlinearities of derivative type , 2015, 1507.07617.

[3]  Donghyun Kim,et al.  A note on decay rates of solutions to a system of cubic nonlinear Schrödinger equations in one space dimension , 2014, Asymptot. Anal..

[4]  Soichiro Katayama,et al.  Energy decay for systems of semilinear wave equations with dissipative structure in two space dimensions , 2013, 1309.6006.

[5]  Donghyun Kim,et al.  Remarks on decay of small solutions to systems of Klein-Gordon equations with dissipative nonlinearities , 2013, 1307.7890.

[6]  S. Katayama,et al.  Semilinear hyperbolic systems violating the null condition , 2012, 1206.0066.

[7]  S. Katayama Asymptotic behavior for systems of nonlinear wave equations with multiple propagation speeds in three space dimensions , 2012, 1205.5944.

[8]  S. Katayama,et al.  The energy decay and asymptotics for a class of semilinear wave equations in two space dimensions , 2011, 1111.4231.

[9]  A. Hoshiga The existence of the global solutions to semilinear wave equations with a class of cubic nonlinearities in 2-dimensional space , 2008 .

[10]  H. Kubo Asymptotic behavior of solutions to semilinear wave equations with dissipative structure , 2007 .

[11]  Hans Lindblad Global Solutions of Quasilinear Wave Equations , 2005, math/0511461.

[12]  H. Kubo Asymptotic behavior of solutions to semilinear systems of wave equations , 2005 .

[13]  I. Rodnianski,et al.  Global Existence for the Einstein Vacuum Equations in Wave Coordinates , 2003, math/0312479.

[14]  Hans Lindblad,et al.  The weak null condition for Einstein's equations , 2003 .

[15]  Serge Alinhac,et al.  The null condition for quasilinear wave equations in two space dimensions I , 2001 .

[16]  Soichiro Katayama,et al.  Global existence for systems of nonlinear wave equations in two space dimensions , 1993 .

[17]  Akira Hoshiga,et al.  The initial value problems for quasi‐linear wave equations in two space dimensions with small data , 1992 .

[18]  Hans Lindblad Global solutions of nonlinear wave equations , 1992 .

[19]  Demetrios Christodoulou,et al.  Global solutions of nonlinear hyperbolic equations for small initial data , 1986 .

[20]  S. Katayama Remarks on the asymptotic behavior of global solutions to systems of semilinear wave equations , 2019 .

[21]  S. Katayama Global Solutions and the Asymptotic Behavior for Nonlinear Wave Equations with Small Initial Data , 2017 .

[22]  S. Alinhac Semilinear hyperbolic systems with blowup at infinity , 2006 .

[23]  P. Godin Lifespan of solutions of semilinear wave equations in two space dimensions , 1993 .

[24]  Fritz John,et al.  Existence for large times of strict solutions of nonlinear wave equations in three space dimensions for small initial data , 1987 .

[25]  L. Hörmander,et al.  The lifespan of classical solutions of non-linear hyperbolic equations , 1987 .

[26]  Fritz John,et al.  Blow-Up for Quasi-Linear Wave Equations in Three Space Dimensions , 1981 .