Compressed Sensing in Astronomy

Recent advances in signal processing have focused on the use of sparse representations in various applications. A new field of interest based on sparsity has recently emerged: compressed sensing. This theory is a new sampling framework that provides an alternative to the well-known Shannon sampling theory. In this paper, we investigate how compressed sensing (CS) can provide new insights into astronomical data compression. We first give a brief overview of the compressed sensing theory which provides very simple coding process with low computational cost, thus favoring its use for real-time applications often found onboard space mission. In practical situations, owing to particular observation strategies (for instance, raster scans) astronomical data are often redundant; in that context, we point out that a CS-based compression scheme is flexible enough to account for particular observational strategies. Indeed, we show also that CS provides a new fantastic way to handle multiple observations of the same field view, allowing us to recover low level details, which is impossible with standard compression methods. This kind of CS data fusion concept could lead to an elegant and effective way to solve the problem ESA is faced with, for the transmission to the earth of the data collected by PACS, one of the instruments onboard the Herschel spacecraft which will launched in late 2008/early 2009. We show that CS enables to recover data with a spatial resolution enhanced up to 30% with similar sensitivity compared to the averaging technique proposed by ESA.

[1]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[2]  Yaakov Tsaig,et al.  Extensions of compressed sensing , 2006, Signal Process..

[3]  Mohamed-Jalal Fadili,et al.  Sparsity and Morphological Diversity in Blind Source Separation , 2007, IEEE Transactions on Image Processing.

[4]  Horst Bischof,et al.  On-board Data Processing to Lower Bandwidth Requirements on an Infrared Astronomy Satellite: Case of Herschel-PACS Camera , 2005, EURASIP J. Adv. Signal Process..

[5]  U. Schwarz,et al.  The Multi-Resolution CLEAN and its application to the short-spacing problem in interferometry , 1988 .

[6]  H. Bischof,et al.  The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory , 2010, 1005.1487.

[7]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[8]  Jean Pierre Veran,et al.  COMPRESSION Software for Astronomical Images , 1994 .

[9]  R. Baraniuk,et al.  Compressive Radar Imaging , 2007, 2007 IEEE Radar Conference.

[10]  F. Herrmann,et al.  Compressed wavefield extrapolation , 2007 .

[11]  M. R. Osborne,et al.  A new approach to variable selection in least squares problems , 2000 .

[12]  R. Ramlau,et al.  A Projection Iteration for Nonlinear Operator Equations with Sparsity Constraints , 2006 .

[13]  D. Donoho,et al.  Redundant Multiscale Transforms and Their Application for Morphological Component Separation , 2004 .

[14]  Pierre Vandergheynst,et al.  On the exponential convergence of matching pursuits in quasi-incoherent dictionaries , 2006, IEEE Transactions on Information Theory.

[15]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[16]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[17]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[18]  E.J. Candes Compressive Sampling , 2022 .

[19]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .

[20]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[21]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[22]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[23]  Yaakov Tsaig,et al.  Fast Solution of $\ell _{1}$ -Norm Minimization Problems When the Solution May Be Sparse , 2008, IEEE Transactions on Information Theory.

[24]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[25]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[26]  O. Milenkovic,et al.  Designing Compressive Sensing DNA Microarrays , 2007, 2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing.

[27]  William H. Press,et al.  Wavelet-Based Compression Software for FITS Images , 1992 .

[28]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[29]  E. Candès,et al.  People Hearing Without Listening : ” An Introduction To Compressive Sampling , 2007 .

[30]  M. Fornasier,et al.  Iterative thresholding algorithms , 2008 .

[31]  Richard G. Baraniuk,et al.  A new compressive imaging camera architecture using optical-domain compression , 2006, Electronic Imaging.

[32]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[33]  Joseph Wilder A review of: “Image Processing and Data Analysis, the Multiscale Approach” J-L Starck, F. Murtagh and A. Bijaoui Cambridge University Press, ISBN 0-521-59084-1, $80.00 , 1999 .

[34]  Justin Romberg,et al.  Practical Signal Recovery from Random Projections , 2005 .

[35]  J. Tropp JUST RELAX: CONVEX PROGRAMMING METHODS FOR SUBSET SELECTION AND SPARSE APPROXIMATION , 2004 .

[36]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[37]  Michael Elad,et al.  Submitted to Ieee Transactions on Image Processing Image Decomposition via the Combination of Sparse Representations and a Variational Approach , 2022 .

[38]  M. G. Lattanzi,et al.  Compression of the Guide Star Digitised Schmidt Plates , 1992 .

[39]  Rebecca Willett,et al.  Compressive coded aperture video reconstruction , 2008, 2008 16th European Signal Processing Conference.

[40]  Jean-Luc Starck,et al.  ASTRONOMICAL IMAGE COMPRESSION BASED ON NOISE SUPPRESSION , 1996 .

[41]  A. Strong Maximum Entropy imaging with INTEGRAL/SPI data , 2003 .

[42]  Eric Anterrieu,et al.  CLEAN and WIPE , 1997 .

[43]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[44]  G. K. Skinner Coded-Mask Imaging in Gamma-Ray Astronomy - Separating the Real and Imaginary parts of a Complex subject , 2003 .

[45]  Joel A. Tropp,et al.  Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.

[46]  Mohamed-Jalal Fadili,et al.  EM algorithm for sparse representation-based image inpainting , 2005, IEEE International Conference on Image Processing 2005.

[47]  Dmitry M. Malioutov,et al.  Homotopy continuation for sparse signal representation , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[48]  Michael W. Marcellin,et al.  JPEG2000 - image compression fundamentals, standards and practice , 2002, The Kluwer International Series in Engineering and Computer Science.

[49]  Mark D. Plumbley Recovery of Sparse Representations by Polytope Faces Pursuit , 2006, ICA.

[50]  D. Donoho,et al.  Fast Solution of -Norm Minimization Problems When the Solution May Be Sparse , 2008 .

[51]  Thomas Henning,et al.  The photodetector array camera and spectrometer (PACS) for the Herschel Space Observatory , 2006, SPIE Astronomical Telescopes + Instrumentation.

[52]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[53]  Robert D. Nowak,et al.  An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..

[54]  J. Högbom,et al.  APERTURE SYNTHESIS WITH A NON-REGULAR DISTRIBUTION OF INTERFEROMETER BASELINES. Commentary , 1974 .

[55]  J. Tropp,et al.  SIGNAL RECOVERY FROM PARTIAL INFORMATION VIA ORTHOGONAL MATCHING PURSUIT , 2005 .

[56]  Fionn Murtagh,et al.  Image Processing and Data Analysis - The Multiscale Approach , 1998 .

[57]  Albert Bijaoui,et al.  All-sky imaging at high angular resolution: An overview using lossy compression , 2004 .

[58]  Jean-Luc Starck,et al.  Astronomical image and data analysis , 2002 .

[59]  Emmanuel J. Candès,et al.  Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions , 2004, Found. Comput. Math..

[60]  Michael Elad,et al.  From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..

[61]  Martin Vetterli,et al.  Wavelets, approximation, and compression , 2001, IEEE Signal Process. Mag..

[62]  David L. Donoho,et al.  Sparse Solution Of Underdetermined Linear Equations By Stagewise Orthogonal Matching Pursuit , 2006 .

[63]  R.G. Baraniuk,et al.  Compressive Sensing [Lecture Notes] , 2007, IEEE Signal Processing Magazine.

[64]  Fionn Murtagh,et al.  Image restoration with noise suppression using the wavelet transform , 1994 .

[65]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2002, IEEE Trans. Image Process..

[66]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[67]  E. Candès,et al.  Ridgelets: a key to higher-dimensional intermittency? , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[68]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[69]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[70]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[71]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[72]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[73]  Albert Bijaoui,et al.  Astronomical image data compression by morphological skeleton transformation , 1990 .