First principles calculation of CH4 decomposition on nickel (111) surface

[1]  Y. Shibuta,et al.  Low reactivity of methane on copper surface during graphene synthesis via CVD process: Ab initio molecular dynamics simulation , 2014 .

[2]  S. Ha,et al.  Density functional theory studies of methyl dissociation on a Ni(111) surface in the presence of an external electric field. , 2014, Physical chemistry chemical physics : PCCP.

[3]  Y. Shibuta,et al.  Ab initio molecular dynamics simulation of dissociation of methane on nickel(111) surface: Unravelling initial stage of graphene growth via a CVD technique , 2013 .

[4]  K. Xie,et al.  A DFT theoretical study of CH4 dissociation on gold-alloyed Ni(111) surface , 2011 .

[5]  Jinlong Yang,et al.  First-Principles Thermodynamics of Graphene Growth on Cu Surfaces , 2011, 1101.3851.

[6]  J. Parlebas,et al.  Adsorption and co-adsorption of CH3 and H on flat and defective nickel (111) surfaces , 2010 .

[7]  M. Rybin,et al.  Control of number of graphene layers grown by chemical vapor deposition , 2010 .

[8]  Anuj R. Madaria,et al.  Comparison of Graphene Growth on Single-Crystalline and Polycrystalline Ni by Chemical Vapor Deposition , 2010 .

[9]  V. K. Portnoi,et al.  Formation of nickel carbide in the course of deformation treatment of Ni-C mixtures , 2010 .

[10]  B. Jackson,et al.  Methane dissociation and adsorption on Ni(111), Pt(111), Ni(100), Pt(100), and Pt(110)-(1 x 2): energetic study. , 2010, The Journal of chemical physics.

[11]  J. Mueller,et al.  Structures, Energetics, and Reaction Barriers for CH_x Bound to the Nickel (111) Surface , 2009 .

[12]  Luigi Colombo,et al.  Evolution of graphene growth on Ni and Cu by carbon isotope labeling. , 2009, Nano letters.

[13]  A. Reina,et al.  Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. , 2009, Nano letters.

[14]  B. Jackson,et al.  Methane dissociation on Ni(111) and Pt(111): energetic and dynamical studies. , 2009, The Journal of chemical physics.

[15]  Priya Vashishta,et al.  Electronic processes in fast thermite chemical reactions: a first-principles molecular dynamics study. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  L. Barelli,et al.  Hydrogen production through sorption-enhanced steam methane reforming and membrane technology : A review , 2008 .

[17]  B. Jackson,et al.  Methane dissociation on Ni(111): the effects of lattice motion and relaxation on reactivity. , 2007, The Journal of chemical physics.

[18]  P. Maroni,et al.  State-resolved reactivity of CH4(2nu3) on Pt(111) and Ni(111): effects of barrier height and transition state location. , 2007, The journal of physical chemistry. A.

[19]  B. Jackson,et al.  Methane dissociation on Ni(111): the role of lattice reconstruction. , 2007, Physical review letters.

[20]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[21]  J. Nørskov,et al.  Methane activation on Ni(111) : Effects of poisons and step defects , 2005 .

[22]  S. Blanksby,et al.  Bond dissociation energies of organic molecules. , 2003, Accounts of chemical research.

[23]  Rajiv K. Kalia,et al.  Linear-scaling density-functional-theory calculations of electronic structure based on real-space grids: design, analysis, and scalability test of parallel algorithms , 2001 .

[24]  G. Hutchings,et al.  A Comparison of the Adsorption and Diffusion of Hydrogen on the {111} Surfaces of Ni, Pd, and Pt from Density Functional Theory Calculations , 2001 .

[25]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[26]  J. Hafner,et al.  First-principles study of the adsorption of atomic H on Ni (111), (100) and (110) , 2000 .

[27]  A. Michaelides,et al.  A density functional theory study of CH2 and H adsorption on Ni(111) , 2000 .

[28]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[29]  Andreoni,et al.  The chemistry of water on alumina surfaces: reaction dynamics from first principles , 1998, Science.

[30]  H. Jónsson,et al.  Nudged elastic band method for finding minimum energy paths of transitions , 1998 .

[31]  Alessandro Curioni,et al.  DENSITY FUNCTIONAL THEORY-BASED MOLECULAR DYNAMICS SIMULATION OF ACID-CATALYZED CHEMICAL REACTIONS IN LIQUID TRIOXANE , 1997 .

[32]  Meng-Sheng Liao,et al.  Methane dissociation on Ni, Pd, Pt and Cu metal (111) surfaces — a theoretical comparative study , 1997 .

[33]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[34]  J. Nørskov,et al.  A theoretical study of CH4 dissociation on pure and gold‐alloyed Ni(111) surfaces , 1996 .

[35]  A. Jansen,et al.  MCTDH study of CH4 dissociation on Ni(111) , 1995 .

[36]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[37]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[38]  Singh,et al.  Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation , 1993, Physical review. B, Condensed matter.

[39]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[40]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[41]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[42]  Hong Yang,et al.  Dissociative chemisorption of CH4 on Ni(111) , 1992 .

[43]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[44]  M. B. Lee,et al.  Dynamics of the activated dissociative chemisorption of CH4 and implication for the pressure gap in catalysis: A molecular beam–high resolution electron energy loss study , 1987 .

[45]  B. D. Kay,et al.  Kinetics of the activated dissociative adsorption of methane on the low index planes of nickel single crystal surfaces , 1987 .

[46]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[47]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[48]  D. Hamann,et al.  Norm-Conserving Pseudopotentials , 1979 .

[49]  J. Blakely,et al.  Carbon monolayer phase condensation on Ni(111) , 1979 .

[50]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[51]  Jens R. Rostrup-Nielsen,et al.  Theoretical Studies of Stability and Reactivity of CHx Species on Ni(111) , 2000 .