Excellent microwave absorption of void@carbon@TiO2 cubes by a template sol method

[1]  Wenhua Wu,et al.  Defect and Interface Co-Steering Ultra-Wide Microwave Absorption and Superior Thermal Conductance of Tio 2 /Fe/C Nanocomposites , 2022, SSRN Electronic Journal.

[2]  Peng Liu,et al.  High yield hollow carbon cubes with excellent microwave absorption property at a low loading ratio , 2022, Carbon.

[3]  Qinqin Liu,et al.  Carbon hollow spheres as cocatalyst of Cu-doped TiO2 nanoparticles for improved photocatalytic H2 generation , 2022, Rare Metals.

[4]  Yuming Zhou,et al.  Lightweight TiO2@C/Carbon Fiber Aerogels Prepared from Ti3C2Tx/Cotton for High-Efficiency Microwave Absorption. , 2022, Langmuir : the ACS journal of surfaces and colloids.

[5]  Guozhu Shen,et al.  Dielectric and microwave absorption performances of hollow C/TiO2 composite microspheres , 2021, MRS Communications.

[6]  Fenghua Liu,et al.  Construction of multiple electron transfer paths in 1D core-shell hetetrostructures with MXene as interlayer enabling efficient microwave absorption , 2021, Carbon.

[7]  B. Ouyang,et al.  Nitrogen-Doped Ti3C2Tx MXene Induced by Plasma Treatment with Enhanced Microwave Absorption Properties. , 2021, ACS applied materials & interfaces.

[8]  J. Liou,et al.  Self-assembling SiC nanoflakes/MXenes composites embedded in polymers towards efficient electromagnetic wave attenuation , 2021, Applied Surface Science.

[9]  Yuping Duan,et al.  Sintering-regulated two-dimensional plate@shell basalt@NiO heterostructure for enhanced microwave absorption , 2021, Applied Surface Science.

[10]  Rui Li,et al.  Optimization of Fe@Ag core-shell nanowires with improved impedance matching and microwave absorption properties , 2021, Chemical Engineering Journal.

[11]  S. Solgi,et al.  Improvement of microwave absorption properties of polyester coatings using NiFe2O4, X-doped g-C3N4 (X = S, P, and O), and MTiO3 (M = Fe, Mg, and Zn) nanofillers , 2021, Scientific Reports.

[12]  Jiqi Wang,et al.  Preparation of core-shell C@TiO2 composite microspheres with wrinkled morphology and its microwave absorption. , 2021, Journal of colloid and interface science.

[13]  Qiuyu Zhang,et al.  Bimetallic MOFs-derived yolk-shell structure ZnCo/NC@TiO2 and its microwave absorbing properties , 2021 .

[14]  Yuping Duan,et al.  Morphology-controlled self-assembly synthesis and excellent microwave absorption performance of MnO2 microspheres of fibrous flocculation , 2021 .

[15]  M. Cao,et al.  Construction of low-frequency and high-efficiency electromagnetic wave absorber enabled by texturing rod-like TiO2 on few-layer of WS2 nanosheets , 2021 .

[16]  Han Chen,et al.  Rational design of multi-shell hollow carbon submicrospheres for high-performance microwave absorbers , 2021 .

[17]  S. Mustapha,et al.  Facile synthesis and characterization of TiO2 nanoparticles: X-ray peak profile analysis using Williamson–Hall and Debye–Scherrer methods , 2021, International Nano Letters.

[18]  Z. Shao,et al.  Enhanced Dielectric Polarization from Disorder-Engineered Fe3O4@Black TiO2-x Heterostructure for Broadband Microwave Absorption , 2021 .

[19]  R. Che,et al.  Hollow Engineering to Co@N‐Doped Carbon Nanocages via Synergistic Protecting‐Etching Strategy for Ultrahigh Microwave Absorption , 2021, Advanced Functional Materials.

[20]  Hongjing Wu,et al.  Defect Induced Polarization Loss in Multi‐Shelled Spinel Hollow Spheres for Electromagnetic Wave Absorption Application , 2021, Advanced science.

[21]  Yuchang Qing,et al.  Ti3+ self-doped dark TiO2 nanoparticles with tunable and unique dielectric properties for electromagnetic applications , 2021 .

[22]  Z. Yao,et al.  Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties , 2021 .

[23]  Hongjing Wu,et al.  Novel magnetic silicate composite for lightweight and efficient electromagnetic wave absorption , 2021 .

[24]  Xueqin Wang,et al.  Microstructural modification of hollow TiO2 nanospheres and their photocatalytic performance , 2021 .

[25]  Hongliang Xu,et al.  Constructing γ-MnO2 hollow spheres with tunable microwave absorption properties , 2020 .

[26]  Yingli Zhu,et al.  Synthesis, oxidation resistance and microwave absorbing properties of FeCo-based heterostructures , 2020 .

[27]  Jiqi Wang,et al.  Core-shell structured Fe/Fe3O4@TCNFs@TiO2 magnetic hybrid nanofibers: Preparation and electromagnetic parameters regulation for enhanced microwave absorption , 2020 .

[28]  Peng Liu,et al.  Giant permittivity up to 100 MHz in La and Nb co‐doped rutile TiO 2 ceramics , 2020 .

[29]  Jingquan Liu,et al.  Rapid and direct growth of bipyramid TiO2 from Ti3C2Tx MXene to prepare Ni/TiO2/C heterogeneous composites for high-performance microwave absorption , 2020 .

[30]  B. Xu,et al.  Fabrication and investigation on ternary heterogeneous MWCNT@TiO2-C fillers and their silicone rubber wave-absorbing composites , 2020 .

[31]  Wei Liu,et al.  Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption , 2020 .

[32]  Xianwei Meng,et al.  Enhancing microwave absorption by constructing core/shell TiN@TiO2 heterostructures through post-oxidation annealing , 2019 .

[33]  Hongjing Wu,et al.  Ultra-thin broccoli-like SCFs@TiO2 one-dimensional electromagnetic wave absorbing material , 2019 .

[34]  Jingmin Wang,et al.  Heterostructured TiO2/C/Co from ZIF-67 Frameworks for Microwave-Absorbing Nanomaterials , 2019, ACS Applied Nano Materials.

[35]  Zikang Tang,et al.  Lightweight, three-dimensional carbon Nanotube@TiO2 sponge with enhanced microwave absorption performance , 2019, Carbon.

[36]  X. Gu,et al.  Titanosilicate Derived SiO2/TiO2@C Nanosheets with Highly Distributed TiO2 Nanoparticles in SiO2 Matrix as Robust Lithium Ion Battery Anode. , 2018, ACS applied materials & interfaces.

[37]  Xiaotong Zheng,et al.  Self-Assembled Sandwich-like MXene-Derived Nanocomposites for Enhanced Electromagnetic Wave Absorption. , 2018, ACS applied materials & interfaces.

[38]  J. Hyun,et al.  Axial oxygen vacancy-regulated microwave absorption in micron-sized tetragonal BaTiO3 particles , 2018 .

[39]  Haifeng Cheng,et al.  Magnetic and microwave absorption properties of Fe/TiO2 nanocomposites prepared by template electrodeposition , 2018, Journal of Alloys and Compounds.

[40]  G. Ji,et al.  Nanoporous TiO2/C composites synthesized from directly pyrolysis of a Ti-based MOFs MIL-125(Ti) for efficient microwave absorption , 2017 .

[41]  Ping Chen,et al.  Self-assembly of ternary hollow microspheres with strong wideband microwave absorption and controllable microwave absorption properties , 2017, Scientific Reports.

[42]  G. Ji,et al.  Application of unit polarization strategy to achieve high-performance electromagnetic absorption by designing ternary SiO2@TiO2-C composite , 2017 .

[43]  Yanhui Hou,et al.  Tunable design of yolk–shell ZnFe2O4@RGO@TiO2 microspheres for enhanced high-frequency microwave absorption , 2017 .

[44]  Lai-fei Cheng,et al.  Laminated and Two-Dimensional Carbon-Supported Microwave Absorbers Derived from MXenes. , 2017, ACS applied materials & interfaces.

[45]  Xiaowei Li,et al.  Biomass lysine-derived nitrogen-doped carbon hollow cubes via a NaCl crystal template: an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. , 2017, Nanoscale.

[46]  Youwei Du,et al.  A novel Co/TiO2 nanocomposite derived from a metal–organic framework: synthesis and efficient microwave absorption , 2016 .

[47]  Xiaodong Wang,et al.  Preparation of Honeycomb SnO₂ Foams and Configuration-Dependent Microwave Absorption Features. , 2015, ACS applied materials & interfaces.

[48]  Yong Qin,et al.  Preparation and microwave absorption properties of uniform TiO2@C core–shell nanocrystals , 2015 .

[49]  B. Wen,et al.  Reduced Graphene Oxides: Light‐Weight and High‐Efficiency Electromagnetic Interference Shielding at Elevated Temperatures , 2014, Advanced materials.

[50]  Hua Chen,et al.  Electron-pinned defect-dipoles for high-performance colossal permittivity materials. , 2013, Nature materials.

[51]  H. Fu,et al.  Efficient TiO2 Photocatalysts from Surface Hybridization of TiO2 Particles with Graphite‐like Carbon , 2008 .

[52]  N. Chen,et al.  Microwave absorption properties of hollow microsphere/titania/M-type Ba ferrite nanocomposites , 2007 .