Tellurite resistance gene trgB confers copper tolerance to Rhodobacter capsulatus

[1]  J. Lackmann,et al.  Transcriptional and Posttranscriptional Events Control Copper-Responsive Expression of a Rhodobacter capsulatus Multicopper Oxidase , 2012, Journal of bacteriology.

[2]  C. Chien,et al.  Isolation and characterization of an environmental cadmium‐ and tellurite‐resistant Pseudomonas strain , 2011, Environmental toxicology and chemistry.

[3]  N. Robinson Structural biology: A platform for copper pumps , 2011, Nature.

[4]  A. Fernandes,et al.  Interaction of selenite and tellurite with thiol-dependent redox enzymes: Kinetics and mitochondrial implications. , 2011, Free radical biology & medicine.

[5]  C. Su,et al.  The Cus efflux system removes toxic ions via a methionine shuttle , 2011, Protein science : a publication of the Protein Society.

[6]  Narmada Thanki,et al.  CDD: a Conserved Domain Database for the functional annotation of proteins , 2010, Nucleic Acids Res..

[7]  E. Schleiff,et al.  The interplay between siderophore secretion and coupled iron and copper transport in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. , 2010, Biochimica et biophysica acta.

[8]  F. Daldal,et al.  The Putative Assembly Factor CcoH Is Stably Associated with the cbb3-Type Cytochrome Oxidase , 2010, Journal of bacteriology.

[9]  A. Müller,et al.  A Rhodobacter capsulatus Member of a Universal Permease Family Imports Molybdate and Other Oxyanions , 2010, Journal of bacteriology.

[10]  C. Jacob,et al.  Tellurium: an element with great biological potency and potential. , 2010, Organic & biomolecular chemistry.

[11]  A. Blomberg,et al.  Sulfate Assimilation Mediates Tellurite Reduction and Toxicity in Saccharomyces cerevisiae , 2010, Eukaryotic Cell.

[12]  V. Cambiazo,et al.  Genome-wide transcriptome analysis of the adaptive response of Enterococcus faecalis to copper exposure , 2010, BioMetals.

[13]  Martin Ester,et al.  PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes , 2010, Bioinform..

[14]  R. Haselkorn,et al.  Complete Genome Sequence of the Photosynthetic Purple Nonsulfur Bacterium Rhodobacter capsulatus SB 1003 , 2010, Journal of bacteriology.

[15]  Ivano Bertini,et al.  Cellular copper distribution: a mechanistic systems biology approach , 2010, Cellular and Molecular Life Sciences.

[16]  M. Marahiel,et al.  Copper Stress Affects Iron Homeostasis by Destabilizing Iron-Sulfur Cluster Formation in Bacillus subtilis , 2010, Journal of bacteriology.

[17]  M. Sweet,et al.  The Multi-Copper-Ion Oxidase CueO of Salmonella enterica Serovar Typhimurium Is Required for Systemic Virulence , 2010, Infection and Immunity.

[18]  D. Zannoni,et al.  Acetate Permease (ActP) Is Responsible for Tellurite (TeO32−) Uptake and Resistance in Cells of the Facultative Phototroph Rhodobacter capsulatus , 2009, Applied and Environmental Microbiology.

[19]  L. Juliano,et al.  A glimpse on biological activities of tellurium compounds. , 2009, Anais da Academia Brasileira de Ciencias.

[20]  D. Fuentes,et al.  Tellurite: history, oxidative stress, and molecular mechanisms of resistance. , 2009, FEMS microbiology reviews.

[21]  I. Calderón,et al.  Tellurite-mediated disabling of [4Fe-4S] clusters of Escherichia coli dehydratases. , 2009, Microbiology.

[22]  J. Imlay,et al.  The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity , 2009, Proceedings of the National Academy of Sciences.

[23]  C. Singleton,et al.  The N-terminal soluble domains of Bacillus subtilis CopA exhibit a high affinity and capacity for Cu(I) ions. , 2009, Dalton transactions.

[24]  C. Vásquez,et al.  The dihydrolipoamide dehydrogenase of Aeromonas caviae ST exhibits NADH-dependent tellurite reductase activity. , 2008, Biochemical and biophysical research communications.

[25]  Dietrich H. Nies,et al.  Glutathione and Transition-Metal Homeostasis in Escherichia coli , 2008, Journal of bacteriology.

[26]  L. Tenori,et al.  Structure and Cu(I)-binding properties of the N-terminal soluble domains of Bacillus subtilis CopA. , 2008, The Biochemical journal.

[27]  L. Alcaraz,et al.  Folding and Unfolding in the Blue Copper Protein Rusticyanin: Role of the Oxidation State , 2007, Bioinorganic chemistry and applications.

[28]  I. Calderón,et al.  Bacterial Toxicity of Potassium Tellurite: Unveiling an Ancient Enigma , 2007, PloS one.

[29]  V. Tremaroli,et al.  Evidence for a tellurite-dependent generation of reactive oxygen species and absence of a tellurite-mediated adaptive response to oxidative stress in cells of Pseudomonas pseudoalcaligenes KF707 , 2007, Archives of Microbiology.

[30]  P. Youderian,et al.  Catalases Are NAD(P)H-Dependent Tellurite Reductases , 2006, PloS one.

[31]  M. Parsek,et al.  Survival and Growth in the Presence of Elevated Copper: Transcriptional Profiling of Copper-Stressed Pseudomonas aeruginosa , 2006, Journal of bacteriology.

[32]  Miguel Castañeda,et al.  Identification, cloning and characterization of cysK, the gene encoding O-acetylserine (thiol)-lyase from Azospirillum brasilense, which is involved in tellurite resistance. , 2006, FEMS microbiology letters.

[33]  A. McEwan,et al.  Cross-talk towards the response regulator NtrC controlling nitrogen metabolism in Rhodobacter capsulatus. , 2006, FEMS microbiology letters.

[34]  G. Wildner,et al.  The multicopper oxidase CutO confers copper tolerance to Rhodobacter capsulatus. , 2006, FEMS microbiology letters.

[35]  N. Bulleid,et al.  The role of glutathione in disulphide bond formation and endoplasmic‐reticulum‐generated oxidative stress , 2006, EMBO reports.

[36]  S. Silver,et al.  A bacterial view of the periodic table: genes and proteins for toxic inorganic ions , 2005, Journal of Industrial Microbiology and Biotechnology.

[37]  Chrystala Constantinidou,et al.  The expression profile of Escherichia coli K-12 in response to minimal, optimal and excess copper concentrations. , 2005, Microbiology.

[38]  S. Singh,et al.  Cuprous Oxidase Activity of CueO from Escherichia coli , 2004, Journal of bacteriology.

[39]  A. Müller,et al.  Linkage between Catecholate Siderophores and the Multicopper Oxidase CueO in Escherichia coli , 2004, Journal of bacteriology.

[40]  J. Imlay,et al.  Pathways of oxidative damage. , 2003, Annual review of microbiology.

[41]  C. Rensing,et al.  Molecular Analysis of the Copper-Transporting Efflux System CusCFBA of Escherichia coli , 2003, Journal of bacteriology.

[42]  C. Rensing,et al.  Escherichia coli mechanisms of copper homeostasis in a changing environment. , 2003, FEMS microbiology reviews.

[43]  M. Solioz,et al.  Copper homeostasis in Enterococcus hirae. , 2003, FEMS microbiology reviews.

[44]  S. Fedi,et al.  Reduction of potassium tellurite to elemental tellurium and its effect on the plasma membrane redox components of the facultative phototroph Rhodobacter capsulatus , 2003, Protoplasma.

[45]  B. Rosen,et al.  Biochemical Characterization of CopA, the Escherichia coli Cu(I)-translocating P-type ATPase* , 2002, The Journal of Biological Chemistry.

[46]  C. Saavedra,et al.  The Product of the cysK Gene of Bacillus stearothermophilus V Mediates Potassium Tellurite Resistance in Escherichia coli , 2001, Current Microbiology.

[47]  Thomas V. O'Halloran,et al.  The Independent cue and cusSystems Confer Copper Tolerance during Aerobic and Anaerobic Growth inEscherichia coli * , 2001, The Journal of Biological Chemistry.

[48]  D. Frick,et al.  Studies on the ADP-ribose Pyrophosphatase Subfamily of the Nudix Hydrolases and Tentative Identification of trgB, a Gene Associated with Tellurite Resistance* , 1999, The Journal of Biological Chemistry.

[49]  J. Weiner,et al.  Tellurite-mediated thiol oxidation in Escherichia coli. , 1999, Microbiology.

[50]  D. Taylor,et al.  Bacterial tellurite resistance. , 1999, Trends in microbiology.

[51]  K. Novak The complete genome sequence… , 1998, Nature Medicine.

[52]  A. McEwan,et al.  Xanthine dehydrogenase from the phototrophic purple bacterium Rhodobacter capsulatus is more similar to its eukaryotic counterparts than to prokaryotic molybdenum enzymes , 1998, Molecular microbiology.

[53]  S. Kaplan,et al.  Identification and molecular genetic analysis of multiple loci contributing to high-level tellurite resistance in Rhodobacter sphaeroides 2.4.1 , 1997, Applied and environmental microbiology.

[54]  G. Giordano,et al.  Tellurite reductase activity of nitrate reductase is responsible for the basal resistance of Escherichia coli to tellurite. , 1997, Microbiology.

[55]  D. Roop,et al.  Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. , 1995, Gene.

[56]  D. Cervantes-Laurean,et al.  Glycation of proteins by ADP-ribose , 1994, Molecular and Cellular Biochemistry.

[57]  L. J. McDonald,et al.  Enzymatic and nonenzymatic ADP-ribosylation of cysteine , 1994, Molecular and Cellular Biochemistry.

[58]  N. Brown,et al.  Accumulation and intracellular fate of tellurite in tellurite-resistant Escherichia coli: a model for the mechanism of resistance. , 1994, FEMS microbiology letters.

[59]  S. Kaplan,et al.  Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides , 1992, Journal of bacteriology.

[60]  A. Pühler,et al.  Identification and mapping of nitrogen fixation genes of Rhodobacter capsulatus: duplication of a nifA-nifB region , 1988, Journal of bacteriology.

[61]  J. Vieira,et al.  The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. , 1982, Gene.

[62]  J. Wall,et al.  Characterization of Rhodopseudomonas capsulata , 1975, Archives of Microbiology.

[63]  P. Hallenbeck,et al.  Nitrogen and molybdenum control of nitrogen fixation in the phototrophic bacterium Rhodobacter capsulatus. , 2010, Advances in experimental medicine and biology.

[64]  F. Daldal,et al.  A glimpse into the proteome of phototrophic bacterium Rhodobacter capsulatus. , 2010, Advances in experimental medicine and biology.

[65]  M. Solioz,et al.  Response of Gram-positive bacteria to copper stress , 2009, JBIC Journal of Biological Inorganic Chemistry.

[66]  E. Fukusaki,et al.  Overexpression of an ADP-ribose pyrophosphatase, AtNUDX2, confers enhanced tolerance to oxidative stress in Arabidopsis plants. , 2009, The Plant journal : for cell and molecular biology.

[67]  K. Waldron,et al.  How do bacterial cells ensure that metalloproteins get the correct metal? , 2009, Nature Reviews Microbiology.

[68]  Antonio Rosato,et al.  Occurrence of copper proteins through the three domains of life: a bioinformatic approach. , 2008, Journal of proteome research.

[69]  Deenah Osman,et al.  Copper homeostasis in bacteria. , 2008, Advances in applied microbiology.

[70]  M. Solioz,et al.  How Bacteria Handle Copper , 2007 .

[71]  Dietrich H. Nies,et al.  Molecular microbiology of heavy metals , 2007 .

[72]  J. Weiner,et al.  Glutathione is a target in tellurite toxicity and is protected by tellurite resistance determinants in Escherichia coli. , 2001, Canadian journal of microbiology.

[73]  A. Berȩsewicz,et al.  Generation of *OH initiated by interaction of Fe2+ and Cu+ with dioxygen; comparison with the Fenton chemistry. , 2000, Acta biochimica Polonica.

[74]  M. Alexeyev Three kanamycin resistance gene cassettes with different polylinkers. , 1995, BioTechniques.

[75]  Alexeyev Mf Three kanamycin resistance gene cassettes with different polylinkers. , 1995 .

[76]  A. Pühler,et al.  A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria , 1983, Bio/Technology.

[77]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .