DAMPD: a manually curated antimicrobial peptide database

The demand for antimicrobial peptides (AMPs) is rising because of the increased occurrence of pathogens that are tolerant or resistant to conventional antibiotics. Since naturally occurring AMPs could serve as templates for the development of new anti-infectious agents to which pathogens are not resistant, a resource that contains relevant information on AMP is of great interest. To that extent, we developed the Dragon Antimicrobial Peptide Database (DAMPD, http://apps.sanbi.ac.za/dampd) that contains 1232 manually curated AMPs. DAMPD is an update and a replacement of the ANTIMIC database. In DAMPD an integrated interface allows in a simple fashion querying based on taxonomy, species, AMP family, citation, keywords and a combination of search terms and fields (Advanced Search). A number of tools such as Blast, ClustalW, HMMER, Hydrocalculator, SignalP, AMP predictor, as well as a number of other resources that provide additional information about the results are also provided and integrated into DAMPD to augment biological analysis of AMPs.

[1]  Lee Whitmore,et al.  The Peptaibol Database: a database for sequences and structures of naturally occurring peptaibols , 2004, Nucleic Acids Res..

[2]  María Martín,et al.  Ongoing and future developments at the Universal Protein Resource , 2010, Nucleic Acids Res..

[3]  J. Hoffmann,et al.  Innate immunity in higher insects. , 1996, Current opinion in immunology.

[4]  T. Ganz Defensins: antimicrobial peptides of innate immunity , 2003, Nature Reviews Immunology.

[5]  H. Sahl,et al.  The co-evolution of host cationic antimicrobial peptides and microbial resistance , 2006, Nature Reviews Microbiology.

[6]  D. Hochstrasser,et al.  The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences , 1993, Electrophoresis.

[7]  David L. Wheeler,et al.  GenBank , 2015, Nucleic Acids Res..

[8]  Conan K. L. Wang,et al.  CyBase: a database of cyclic protein sequences and structures, with applications in protein discovery and engineering , 2007, Nucleic Acids Res..

[9]  Ayyalusamy Ramamoorthy,et al.  The human beta-defensin-3, an antibacterial peptide with multiple biological functions. , 2006, Biochimica et biophysica acta.

[10]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[11]  J. Celis,et al.  Reference points for comparisons of two‐dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions , 1994, Electrophoresis.

[12]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[13]  Andreas Peschel,et al.  Chemokines Meet Defensins: the Merging Concepts of Chemoattractants and Antimicrobial Peptides in Host Defense , 2002, Infection and Immunity.

[14]  Shreyas Karnik,et al.  CAMP: a useful resource for research on antimicrobial peptides , 2009, Nucleic Acids Res..

[15]  Tin Wee Tan,et al.  ANTIMIC: a database of antimicrobial sequences , 2004, Nucleic Acids Res..

[16]  Oscar P. Kuipers,et al.  BAGEL2: mining for bacteriocins in genomic data , 2010, Nucleic Acids Res..

[17]  Michael R. Yeaman,et al.  Mechanisms of Antimicrobial Peptide Action and Resistance , 2003, Pharmacological Reviews.

[18]  Artem Cherkasov,et al.  BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm068 Databases and ontologies AMPer: a database and an automated discovery tool for antimicrobial peptides , 2022 .

[19]  Marc A. Martí-Renom,et al.  MODBASE: a database of annotated comparative protein structure models and associated resources , 2005, Nucleic Acids Res..

[20]  Roger Beuerman,et al.  Defensins knowledgebase: a manually curated database and information source focused on the defensins family of antimicrobial peptides , 2006, Nucleic Acids Res..

[21]  P. McCray,et al.  Antimicrobial peptides in animals and their role in host defences. , 2003, International journal of antimicrobial agents.

[22]  C. Leung,et al.  Treatment of tuberculosis: update 2010 , 2011, European Respiratory Journal.

[23]  Alessandro Tossi,et al.  Mammalian defensins: structures and mechanism of antibiotic activity , 2005, Journal of leukocyte biology.

[24]  H. Sahl,et al.  Multiple activities in lantibiotics--models for the design of novel antibiotics? , 2002, Current pharmaceutical design.

[25]  Zhengxin Chen,et al.  RAPD: a database of recombinantly-produced antimicrobial peptides. , 2008, FEMS microbiology letters.

[26]  L. Kwak,et al.  Mammalian defensins in immunity: more than just microbicidal. , 2002, Trends in immunology.

[27]  Peer Bork,et al.  SMART 6: recent updates and new developments , 2008, Nucleic Acids Res..

[28]  Sean R. Eddy,et al.  Profile hidden Markov models , 1998, Bioinform..

[29]  Riadh Hammami,et al.  PhytAMP: a database dedicated to antimicrobial plant peptides , 2008, Nucleic Acids Res..

[30]  R. Lehrer,et al.  Primate defensins , 2004, Nature Reviews Microbiology.

[31]  Riadh Hammami,et al.  BACTIBASE: a new web-accessible database for bacteriocin characterization , 2007, BMC Microbiology.

[32]  R D Appel,et al.  Protein identification and analysis tools in the ExPASy server. , 1999, Methods in molecular biology.

[33]  K. Brogden Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? , 2005, Nature Reviews Microbiology.

[34]  A. Molina,et al.  Plant defense peptides. , 1998, Biopolymers.

[35]  David Wade,et al.  Synthetic antibiotic peptides database. , 2002, Protein and peptide letters.

[36]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[37]  Ori Sasson,et al.  ProtoNet 4.0: A hierarchical classification of one million protein sequences , 2004, Nucleic Acids Res..

[38]  Amos Bairoch,et al.  PROSITE, a protein domain database for functional characterization and annotation , 2009, Nucleic Acids Res..

[39]  G. Pirri,et al.  Antimicrobial peptides: an overview of a promising class of therapeutics , 2007, Central European Journal of Biology.

[40]  Robert D. Finn,et al.  InterPro: the integrative protein signature database , 2008, Nucleic Acids Res..

[41]  Michel Salzet,et al.  Antimicrobial peptides from animals: focus on invertebrates. , 2002, Trends in pharmacological sciences.

[42]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[43]  R. Hancock,et al.  Cationic peptides: a new source of antibiotics. , 1998, Trends in biotechnology.

[44]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[45]  A. Bayer,et al.  Advances in antimicrobial peptide immunobiology , 2006, Biopolymers.

[46]  John M. Walker,et al.  The Proteomics Protocols Handbook , 2005, Humana Press.

[47]  A. Tossi,et al.  Molecular diversity in gene-encoded, cationic antimicrobial polypeptides. , 2002, Current pharmaceutical design.

[48]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[49]  Xia Li,et al.  APD2: the updated antimicrobial peptide database and its application in peptide design , 2008, Nucleic Acids Res..

[50]  M. Gouy,et al.  WWW-query: an on-line retrieval system for biological sequence banks. , 1996, Biochimie.

[51]  Isabelle Mougenot,et al.  PenBase, the shrimp antimicrobial peptide penaeidin database: sequence-based classification and recommended nomenclature. , 2006, Developmental and comparative immunology.

[52]  Amos Bairoch,et al.  Detailed peptide characterization using PEPTIDEMASS – a World‐Wide‐Web‐accessible tool , 1997, Electrophoresis.

[53]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[54]  S. Blondelle,et al.  Molecular mechanisms of membrane perturbation by antimicrobial peptides and the use of biophysical studies in the design of novel peptide antibiotics. , 2005, Combinatorial chemistry & high throughput screening.