Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimiser

In this study, optimum values of unknown seven parameters of proton exchange membrane fuel cells (PEMFCs) stack are generated for the sake of appropriate modelling. An objective function is adopted to minimise the sum of square errors (SSE) between the experimental data and the corresponding estimated results. A novel application of grasshopper optimisation algorithm (GOA) is engaged to minimise the SSE subjects to set of inequality constraints. Three study cases of typical commercial PEMFCs stacks are demonstrated and verified under various steady-state operating scenarios. Necessary subsequent comparisons to new results by others found in updated state-of-the-art are made. Sensitivity analysis of defined parameters is carried out. It is found that the PEMFC model is susceptible to the deviations of optimised parameters as the errors are substantially disturbed which signifies the value of the GOA-based method. In addition, performance measures to indicate the robustness of the GOA-based methodology are pointed out. At this moment, dynamic model of the stack is addressed and incorporated to demonstrate its dynamic response. Detailed MATLAB/SIMULINK simulation model is implemented to study the PEMFC dynamic performance. The simulated test cases emphasise the viability and effectivity of the GOA-based procedure in steady-state and dynamic simulations.

[1]  Kauko Leiviskä,et al.  Validation of genetic algorithm results in a fuel cell model , 2010 .

[2]  Xuesong Yan,et al.  Parameter extraction of different fuel cell models with transferred adaptive differential evolution , 2015 .

[3]  H. Salehfar,et al.  Equivalent Electric Circuit Modeling and Performance Analysis of a PEM Fuel Cell Stack Using Impedance Spectroscopy , 2010, IEEE Transactions on Energy Conversion.

[4]  Piergiorgio Alotto,et al.  A selective hybrid stochastic strategy for fuel-cell multi-parameter identification , 2016 .

[5]  Ning Wang,et al.  Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm , 2015 .

[6]  N. Rajasekar,et al.  A novel approach for fuel cell parameter estimation using simple Genetic Algorithm , 2015 .

[7]  M. A. Elhameed,et al.  Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer , 2017 .

[8]  Alireza Rezazadeh,et al.  Optimization of PEMFC model parameters with a modified particle swarm optimization , 2011 .

[9]  Alireza Rezazadeh,et al.  An Innovative Global Harmony Search Algorithm for Parameter Identification of a PEM Fuel Cell Model , 2012, IEEE Transactions on Industrial Electronics.

[10]  Piergiorgio Alotto,et al.  Stochastic Methods for Parameter Estimation of Multiphysics Models of Fuel Cells , 2014, IEEE Transactions on Magnetics.

[11]  Manuel A. Rodrigo,et al.  An easy parameter estimation procedure for modeling a HT-PEMFC , 2012 .

[12]  Ning Wang,et al.  Circular genetic operators based RNA genetic algorithm for modeling proton exchange membrane fuel cells , 2014 .

[13]  Olivier Tremblay,et al.  Development of a generic fuel cell model: application to a fuel cell vehicle simulation , 2012 .

[14]  Emmanuel Godoy,et al.  Identification of a PEMFC fractional order model , 2017 .

[15]  Wenyin Gong,et al.  Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution , 2013 .

[16]  Uday K. Chakraborty,et al.  PEM fuel cell modeling using differential evolution , 2012 .

[17]  Andrew Lewis,et al.  Grasshopper Optimisation Algorithm: Theory and application , 2017, Adv. Eng. Softw..

[18]  Alireza Rezazadeh,et al.  Artificial immune system-based parameter extraction of proton exchange membrane fuel cell , 2011 .

[19]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[20]  Pierre R. Roberge,et al.  Development and application of a generalised steady-state electrochemical model for a PEM fuel cell , 2000 .

[21]  José C. Páscoa,et al.  Analysis of PEM (Polymer Electrolyte Membrane) fuel cell cathode two-dimensional modeling , 2014 .

[22]  Qi Li,et al.  Parameter Identification for PEM Fuel-Cell Mechanism Model Based on Effective Informed Adaptive Particle Swarm Optimization , 2011, IEEE Transactions on Industrial Electronics.

[23]  Ning Wang,et al.  Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell , 2013 .

[24]  Soosan Rowshanzamir,et al.  Modelling and simulation of the steady-state and dynamic behaviour of a PEM fuel cell , 2010 .

[25]  Ahmed M. Azmy,et al.  Effect of process parameters on the dynamic behavior of polymer electrolyte membrane fuel cells for electric vehicle applications , 2014 .

[26]  Michael A. Danzer,et al.  Electrochemical parameter identification—An efficient method for fuel cell impedance characterisation , 2008 .

[27]  X. D. Xue,et al.  Unified mathematical modelling of steady-state and dynamic voltage–current characteristics for PEM fuel cells , 2006 .

[28]  Maria Serra,et al.  Characterisation of fuel cell state using Electrochemical Impedance Spectroscopy analysis , 2008 .

[29]  Kang Li,et al.  An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models , 2014 .

[30]  Qi Li,et al.  Seeker optimization algorithm for global optimization: A case study on optimal modelling of proton exchange membrane fuel cell (PEMFC) , 2011 .

[31]  Marcelo Godoy Simões,et al.  Simulation of fuel-cell stacks using a computer-controlled power rectifier with the purposes of actual high-power injection applications , 2003 .

[32]  Q. Niu,et al.  A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells , 2014 .

[33]  Yun Wang,et al.  A review of polymer electrolyte membrane fuel cells: Technology, applications,and needs on fundamental research , 2011 .

[34]  Luciane Neves Canha,et al.  An electrochemical-based fuel-cell model suitable for electrical engineering automation approach , 2004, IEEE Transactions on Industrial Electronics.

[35]  Omar Z. Sharaf,et al.  An overview of fuel cell technology: Fundamentals and applications , 2014 .

[36]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .