Chymase is activated in the hamster heart following ventricular fibrosis during the chronic stage of hypertension

[1]  E. Topol Textbook of Cardiovascular Medicine , 1997 .

[2]  L. Gaboury,et al.  Apoptosis in pressure overload-induced heart hypertrophy in the rat. , 1996, The Journal of clinical investigation.

[3]  S. Takai,et al.  Purification and characterization of angiotensin II-generating chymase from hamster cheek pouch. , 1996, Life sciences.

[4]  E. Lakatta,et al.  The ageing spontaneously hypertensive rat as a model of the transition from stable compensated hypertrophy to heart failure. , 1995, European heart journal.

[5]  L. Richard,et al.  Apoptosis in target organs of hypertension. , 1995, Hypertension.

[6]  J. Taipale,et al.  Human Mast Cell Chymase and Leukocyte Elastase Release Latent Transforming Growth Factor-β1 from the Extracellular Matrix of Cultured Human Epithelial and Endothelial Cells (*) , 1995, The Journal of Biological Chemistry.

[7]  C. Brilla,et al.  Regulation of the structural remodelling of the myocardium: from hypertrophy to heart failure. , 1994, European heart journal.

[8]  F. Marumo,et al.  Hypoxia induces apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. , 1994, Circulation research.

[9]  O. H. Bing Hypothesis: apoptosis may be a mechanism for the transition to heart failure with chronic pressure overload. , 1994, Journal of molecular and cellular cardiology.

[10]  P. Kovanen,et al.  Activation of human interstitial procollagenase through direct cleavage of the Leu83-Thr84 bond by mast cell chymase. , 1994, The Journal of biological chemistry.

[11]  H. Drexler,et al.  Increased angiotensin-I converting enzyme gene expression in the failing human heart. Quantification by competitive RNA polymerase chain reaction. , 1994, The Journal of clinical investigation.

[12]  D. Woolley,et al.  Mast cell proteinases activate precursor forms of collagenase and stromelysin, but not of gelatinases A and B. , 1994, European journal of biochemistry.

[13]  K. Weber,et al.  Collagen metabolism in cultured adult rat cardiac fibroblasts: response to angiotensin II and aldosterone. , 1994, Journal of molecular and cellular cardiology.

[14]  G. Evan,et al.  The c‐Myc protein induces cell cycle progression and apoptosis through dimerization with Max. , 1993, The EMBO journal.

[15]  J. Sadoshima,et al.  Critical Role of the AT1 Receptor Subtype , 2005 .

[16]  A. Fukamizu,et al.  Activation of two angiotensin‐generating systems in the balloon‐injured artery , 1993, FEBS letters.

[17]  M. Miyazaki,et al.  Marked species-difference in the vascular angiotensin II-forming pathways: humans versus rodents. , 1993, Japanese journal of pharmacology.

[18]  E. Koren,et al.  Interaction of Osteoblasts with Extracellular Matrix: Effect of Mast Cell Chymase , 1993, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[19]  S. Ben‐Sasson,et al.  Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation , 1992, The Journal of cell biology.

[20]  M. Miyazaki,et al.  Increase of angiotensin converting enzyme gene expression in the hypertensive aorta. , 1992, Hypertension.

[21]  J. Wiseman,et al.  Role of mast cell chymase in the extracellular processing of big-endothelin-1 to endothelin-1 in the perfused rat lung. , 1992, Biochemical pharmacology.

[22]  R. Black,et al.  Rapid and specific conversion of precursor interleukin 1 beta (IL-1 beta) to an active IL-1 species by human mast cell chymase , 1991, The Journal of experimental medicine.

[23]  K. Misono,et al.  Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. , 1990, The Journal of biological chemistry.

[24]  N. Toda,et al.  Conversion of Angiotensin I to Angiotensin II in Dog Isolated Renal Artery: Role of Two Different Angiotensin II‐Generating Enzymes , 1990, Journal of cardiovascular pharmacology.

[25]  P. Kovanen,et al.  Proteolytic enzymes of mast cell granules degrade low density lipoproteins and promote their granule-mediated uptake by macrophages in vitro. , 1989, The Journal of biological chemistry.

[26]  D. Wolgemuth,et al.  Cascade induction of c-fos, c-myc, and heat shock 70K transcripts during regression of the rat ventral prostate gland. , 1988, Molecular endocrinology.

[27]  M. Miyazaki,et al.  Different distribution of two types of angiotensin II-generating enzymes in the aortic wall. , 1987, Biochemical and biophysical research communications.

[28]  M. Miyazaki,et al.  Evidence for a putatively new angiotensin II-generating enzyme in the vascular wall. , 1984, Journal of hypertension.

[29]  J. Travis,et al.  Rapid conversion of angiotensin I to angiotensin II by neutrophil and mast cell proteinases. , 1982, The Journal of biological chemistry.

[30]  H. Seppä,et al.  Susceptibility of soluble and matrix fibronectins to degradation by tissue proteinases, mast cell chymase and cathepsin G. , 1981, The Journal of biological chemistry.

[31]  Richard J. Jones Heart Disease: A Textbook of Cardiovascular Medicine , 1980 .

[32]  K. Banovac,et al.  The effect of mast cell chymase on extracellular matrix: studies in autoimmune thyroiditis and in cultured thyroid cells. , 1992, International archives of allergy and immunology.

[33]  J. Nadel,et al.  Substance P and vasoactive intestinal peptide degradation by mast cell tryptase and chymase. , 1988, The Journal of pharmacology and experimental therapeutics.

[34]  Tim Pat Coogan The I.R.A. , 1970 .