First-order wavefunctions, orbital correlation energies, and electron affinities of first-row atoms

The most strongly structure‐sensitive part of the correlation energy of an atomic state (called here the orbital correlation energy) may be calculated using a configuration‐interaction function we call the first‐order wavefunction. First‐order wavefunctions and orbital correlation energies are presented for all low‐lying electronic states of B, C, N, O, F, Ne, and their positive and negative ions. These data provide ab initio ionization potentials and electron affinities for the atoms involved, which are used in conjunction with available experimental data to make estimates of unmeasured electron affinities to a probable accuracy of ± 0.10 eV. The results indicate the 3P ground state of B− to be stable by 0.187 eV, while predicting the instability of N− (3P) and the metastability of N−(1D) and N−(1S). In apparent disagreement with the conclusions of Seman and Branscomb, C−(2D) is predicted to be unstable relative to C(3P).

[1]  Henry F. Schaefer,et al.  Atomic Hyperfine Structure. II. First-Order Wave Functions for the Ground States of B,C,N,O, and F , 1969 .

[2]  H. Schaefer,et al.  Metastability of the 1 D State of the Nitrogen Negative Ion , 1968 .

[3]  H. Schaefer,et al.  Construction and use of atomicL-S eigenfunctions , 1968 .

[4]  H. Silverstone,et al.  Modified Perturbation Theory for Atoms and Molecules Based on a Hartree–Fock φ0 , 1968 .

[5]  A. D. McLean,et al.  Computation of molecular properties and structure , 1968 .

[6]  C. F. Bunge Electronic Wave Functions for Atoms. I. Ground State of Be , 1968 .

[7]  H. Schaefer,et al.  Electronic Structure of Atomic Boron , 1968 .

[8]  U. Kaldor Calculation of Extended Hartree‐Fock Wavefunctions , 1968 .

[9]  H. Schaefer,et al.  Calculation of the Electron Affinity of Boron , 1968 .

[10]  K. Freed Many-Body Approach to Electron Correlation in Atoms and Molecules , 1968 .

[11]  O. Sǐnanoğlu,et al.  Theory of Atomic Structure Including Electron Correlation , 1968 .

[12]  A. Weiss Superposition of Configurations and Atomic Oscillator Strengths—Carbon i and ii , 1967 .

[13]  P. E. Cade,et al.  Electronic Structure of Diatomic Molecules. VI.A. Hartree—Fock Wavefunctions and Energy Quantities for the Ground States of the First‐Row Hydrides, AH , 1967 .

[14]  R. Nesbet Atomic Bethe-Goldstone Equations. II. The Ne Atom , 1967 .

[15]  Enrico Clementi,et al.  Correlation Energy in Atomic Systems. IV. Degeneracy Effects , 1966 .

[16]  H. P. Kelly Many-Body Perturbation Theory Applied to Open-Shell Atoms , 1966 .

[17]  O. Sǐnanoğlu,et al.  Many‐Electron Theory of Nonclosed‐Shell Atoms and Molecules. I. Orbital Wavefunction and Perturbation Theory , 1966 .

[18]  B. Moiseiwitsch Electron Affinities of Atoms and Molecules , 1965 .

[19]  V. McKoy,et al.  Many‐Electron Theory of Atoms and Molecules. V. First‐Row Atoms and Their Ions , 1964 .

[20]  R. Allen,et al.  EVIDENCE FOR THE EXISTENCE OF N- FROM THE CONTINUUM RADIATION FROM SHOCK WAVES , 1964 .

[21]  A. D. McLean,et al.  Atomic Negative Ions , 1964 .

[22]  Michele Kaufman Semiempirical Electron Affinities. , 1963 .

[23]  E. Clementi Correlation Energy for Atomic Systems , 1963 .

[24]  R. Crossley Glockler's Equation for Ionization Potentials and Electron Affinities , 1963 .

[25]  M. Seman,et al.  Structure and Photodetachment Spectrum of the Atomic Carbon Negative Ion , 1962 .

[26]  B. Edĺen Isoelectronic Extrapolation of Electron Affinities , 1960 .

[27]  H. R. Johnson,et al.  Negative Atomic Ions , 1959 .

[28]  Jeffrey Goldstone,et al.  Derivation of the Brueckner many-body theory , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[29]  L. Branscomb,et al.  Electron Affinity of Atomic Sulfur and Empirical Affinities of the Light Elements , 1956 .

[30]  D. R. Bates,et al.  Energies of Normal and Excited Negative Ions , 1955 .

[31]  D. R. Bates,et al.  Atomic and molecular processes , 2012 .

[32]  G. Glockler Estimated Electron Affinities of the Light Elements , 1934 .