A straightforward and efficient synthetic access to biologically active marine sesterterpenoids, sesterstatins 4 and 5.

A straightforward and efficient synthesis of sesterstatins 4 and 5 is reported, in which the reductive Heck cyclisation was employed as the key step for constructing the D ring.

[1]  K. C. Majumdar,et al.  Palladium-Mediated Reductive Heck Cyclization for the Formation of Dibenzoazepinone Framework , 2009 .

[2]  W. Deng,et al.  The first synthesis of marine sesterterpene (+)-scalarolide , 2009 .

[3]  D. Ferreira,et al.  Scalarane sesterterpenoids: semisynthesis and biological activity. , 2009, Journal of natural products.

[4]  K. Suwanborirux,et al.  Structure-activity relationships of antitubercular scalaranes: Heteronemin revisited , 2009 .

[5]  L. Overman,et al.  Total synthesis of the strychnos alkaloid (+)-minfiensine: tandem enantioselective intramolecular Heck-iminium ion cyclization. , 2008, Journal of the American Chemical Society.

[6]  J. G. Urones,et al.  Nor-limonoid and homoisoanticopalane lactones from methyl isoanticopalate , 2007 .

[7]  E. V. Van der Eycken,et al.  Efficient synthesis of the 3-benzazepine framework via intramolecular Heck reductive cyclization. , 2007, Organic letters.

[8]  P. Vlad,et al.  Superacid‐Catalyzed Cyclization of Methyl (6Z)‐Geranylfarnesoates , 2007 .

[9]  A. Tasker,et al.  Synthesis of heterocycles via ligand-free palladium catalyzed reductive Heck cyclization , 2007 .

[10]  Yucheng Gu,et al.  Secondary metabolites from the South China Sea invertebrates: chemistry and biological activity. , 2006, Current medicinal chemistry.

[11]  J. Carballo,et al.  Sesterterpene metabolites from the sponge Hyatella intestinalis , 2006 .

[12]  R. Mukhopadhyay,et al.  General route to 4a-methylhydrofluorene diterpenoids: total syntheses of (+/-)-taiwaniaquinones d and h, (+/-)-taiwaniaquinol B, (+/-)-dichroanal B, and (+/-)-dichroanone. , 2006, The Journal of organic chemistry.

[13]  Z. Cichacz,et al.  Antineoplastic agents. 542. Isolation and structure of sesterstatin 6 from the Indian Ocean sponge Hyrtios erecta. , 2005, Journal of natural products.

[14]  N. Ungur,et al.  Synthetic paths towards scalaranes: Assembling the scalaranic skeleton and further transformations , 2006, Phytochemistry Reviews.

[15]  Masaki Takahashi,et al.  Total synthesis of (-)-incarvilline, (+)-incarvine C, and (-)-incarvillateine. , 2004, Journal of the American Chemical Society.

[16]  P. Mangeney,et al.  Revision of the stereochemistry of the reductive Heck cyclisation of 1-(2-iodobenzoyl)-4-substituted-1.4-dihydro-pyridine-3-carbaldehyde aminals , 2003 .

[17]  B. Trost,et al.  Palladium catalyzed kinetic and dynamic kinetic asymmetric transformations of gamma-acyloxybutenolides. Enantioselective total synthesis of (+)-Aflatoxin B1 and B2a. , 2003, Journal of the American Chemical Society.

[18]  P. Vlad,et al.  Studies towards the synthesis of cheilanthane sesterterpenoids: superacidic cyclisation of methyl 13Z,17Z- and 13Z,17E-bicyclogeranylfarnesoates , 2002 .

[19]  B. Trost,et al.  DYKAT of Baylis-Hillman adducts: concise total synthesis of furaquinocin E. , 2002, Journal of the American Chemical Society.

[20]  P. Scheuer,et al.  Salmahyrtisol A, a novel cytotoxic sesterterpene from the Red Sea sponge Hyrtios erecta. , 2002, Journal of natural products.

[21]  M. G. Bolster,et al.  The synthesis of Ambrox®-like compounds starting from (+)-larixol , 2001 .

[22]  C. Agulló,et al.  Synthesis of terpenoid unsaturated 1,4-dialdehydes. Pi-facial selectivity in the Diels-Alder reaction of the 1-vinyl-2-methylcyclohexene moiety of polycyclic systems with DMAD. , 2000, The Journal of organic chemistry.

[23]  A. Fontana,et al.  Synthetic Studies on Natural Diterpenoid Glyceryl Esters , 2000 .

[24]  C. Agulló,et al.  Stereoselective construction of the tetracyclic scalarane skeleton from carvone , 1999 .

[25]  Z. Cichacz,et al.  Antineoplastic agents. 397: Isolation and structure of sesterstatins 4 and 5 from Hyrtios erecta (the Republic of Maldives). , 1998, Bioorganic & medicinal chemistry letters.

[26]  E. Corey,et al.  A Simple Enantioselective Synthesis of the Biologically Active Tetracyclic Marine Sesterterpene Scalarenedial , 1997 .

[27]  M. Ortega,et al.  New Cytotoxic Metabolites from the Sponge Cacospongia scalaris , 1997 .

[28]  P. Vlad,et al.  Superacidic cyclization of higher terpenoid acids and their esters , 1995 .

[29]  J. G. Urones,et al.  Highly Regioselective Elimination of a Ring—attached Acetoxy Group: Methyl Ent—Isocopalate from Sclareol , 1994 .

[30]  T. Nakano,et al.  Total syntheses of marine sponge metabolites. Part 3. Stereoselective total synthesis of (±)-12-deoxyscalaradial , 1988 .

[31]  E. Dalcanale,et al.  Selective oxidation of aldehydes to carboxylic acids with sodium chlorite-hydrogen peroxide , 1986 .

[32]  P. Scheuer,et al.  Scalaradial derivatives from the nudibranch chromodoris youngbleuthi and the sponge spongia oceania , 1986 .

[33]  E. Rúveda,et al.  Synthesis of the novel marine diterpenes (.+-.)-isocopal-12-ene-15,16-dial, (.+-.)-14-epiisocopal-12-ene-15,16-dial, and (.+-.)-15-acetoxyisocopal-12-en-16-al from methyl isocopalate , 1984 .

[34]  Motomasa Kobayashi,et al.  Marine Natural Products. XI. An Antiinflammatory Scalarane-type Bishomosesterterpene, Foliaspongin, from the Okinawan Marine Sponge Phyllospongia foliascens (PALLAS) , 1983 .

[35]  W. Herz,et al.  Biogenetic-type synthesis of scalaranes , 1982 .

[36]  R. Wells,et al.  Five new C26 tetracyclic terpenes from a sponge (Lendenfeldia sp.) , 1982 .

[37]  D. Faulkner,et al.  Sesterterpenes from Spongia idia , 1980 .

[38]  E. Rúveda,et al.  The C-13 configuration of the bromine-containing diterpene isoaplysin-20. Synthesis of debromoisoaplysin-20 and C-13 epimer , 1980 .