Diffraction enhanced imaging contrast mechanisms in breast cancer specimens.

We have investigated the contrast mechanisms of the refraction angle, and the apparent absorption images obtained from the diffraction enhanced imaging technique (DEI) and have correlated them with the absorption contrast of conventional radiography. The contrast of both the DEI refraction angle image and the radiograph have the same dependence on density differences of the tissues in the visualization of cancer; in radiography these differences directly relate to the contrast while in the DEI refraction angle image it is the density difference and thickness gradient that gives the refraction angle. We show that the density difference of fibrils in breast cancer as measured by absorption images correlate well with the density difference derived from refraction angle images of DEI. In addition we find that the DEI apparent absorption image and the image obtained with the DEI system at the top of the reflectivity curve have much greater contrast than that of the normal radiograph (x8 to 33-fold higher). This is due to the rejection of small angle scattering (extinction) from the fibrils enhancing the contrast.