Universal Quantum Transducers Based on Surface Acoustic Waves

We propose a universal, on-chip quantum transducer based on surface acoustic waves in piezoactive materials. Because of the intrinsic piezoelectric (and/or magnetostrictive) properties of the material, our approach provides a universal platform capable of coherently linking a broad array of qubits, including quantum dots, trapped ions, nitrogen-vacancy centers, or superconducting qubits. The quantized modes of surface acoustic waves lie in the gigahertz range and can be strongly confined close to the surface in phononic cavities and guided in acoustic waveguides. We show that this type of surface acoustic excitation can be utilized efficiently as a quantum bus, serving as an on-chip, mechanical cavity-QED equivalent of microwave photons and enabling long-range coupling of a wide range of qubits.

[1]  R. Stoneley,et al.  The propagation of surface elastic waves in a cubic crystal , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  A. Gossard,et al.  Quantum coherence in a one-electron semiconductor charge qubit. , 2010, Physical review letters.

[3]  A S Sørensen,et al.  Optomechanical transducers for long-distance quantum communication. , 2010, Physical review letters.

[4]  Mika A. Sillanpää,et al.  Coherent quantum state storage and transfer between two phase qubits via a resonant cavity , 2007, Nature.

[5]  E. Kessler,et al.  Generalized Schrieffer-Wolff formalism for dissipative systems , 2012, 1205.5440.

[6]  J. Tetienne,et al.  Magnetometry with nitrogen-vacancy defects in diamond , 2013, Reports on progress in physics. Physical Society.

[7]  D. Loss,et al.  Single-spin manipulation in a double quantum dot in the field of a micromagnet , 2014, 1405.7618.

[8]  R. C. Williamson,et al.  Surface-Wave Resonators Using Grooved Reflectors , 1975 .

[9]  O. Soykal,et al.  Toward engineered quantum many-body phonon systems , 2013, 1302.5769.

[10]  P. Zoller,et al.  Quantum communication with dark photons , 1998, quant-ph/9805003.

[11]  P. Zoller,et al.  Continuous mode cooling and phonon routers for phononic quantum networks , 2012, 1205.7008.

[12]  Martin V. Gustafsson,et al.  Propagating phonons coupled to an artificial atom , 2014, Science.

[13]  M. A. Rowe,et al.  Heating of trapped ions from the quantum ground state , 2000 .

[14]  David Morgan,et al.  Surface Acoustic Wave Filters: With Applications to Electronic Communications and Signal Processing , 2007 .

[15]  A. C. Doherty,et al.  Suppressing qubit dephasing using real-time Hamiltonian estimation , 2014, Nature Communications.

[16]  Coupling Rydberg atoms to superconducting qubits via nanomechanical resonator , 2011 .

[17]  D. Bell,et al.  Surface-acoustic-wave resonators , 1976, Proceedings of the IEEE.

[18]  A N Cleland,et al.  Superconducting qubit storage and entanglement with nanomechanical resonators. , 2004, Physical review letters.

[19]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[20]  Arzhang Ardavan,et al.  Surface acoustic wave devices on bulk ZnO at low temperature , 2014, 1411.5916.

[21]  Yih-Hsing Pao,et al.  Elastic Waves in Solids , 1983 .

[22]  J. Nowacki Static and dynamic coupled fields in bodies with piezoeffects or polarization gradient , 2006 .

[23]  Richard M. White,et al.  Surface elastic waves , 1970 .

[24]  A. Yacoby,et al.  Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization , 2009, 1009.5343.

[25]  Eugène Dieulesaint,et al.  Elastic Waves in Solids II , 2000 .

[26]  Massar,et al.  Optimal extraction of information from finite quantum ensembles. , 1995, Physical review letters.

[27]  Yuesheng Wang,et al.  Propagation of Rayleigh-type surface waves in a transversely isotropic piezoelectric layer on a piezomagnetic half-space , 2008 .

[28]  P. Zoller,et al.  A quantum spin transducer based on nanoelectromechanical resonator arrays , 2009, 0908.0316.

[29]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[30]  E. Verona,et al.  Growth of AlN piezoelectric film on diamond for high-frequency surface acoustic wave devices , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[31]  Gardiner,et al.  Driving a quantum system with the output field from another driven quantum system. , 1993, Physical review letters.

[32]  Michael A. Stroscio,et al.  Acoustic phonon quantization in buried waveguides and resonators , 1996 .

[33]  Simón Coupling of surface acoustic waves to a two-dimensional electron gas. , 1996, Physical review. B, Condensed matter.

[34]  Kenneth W. Lee,et al.  Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator , 2014, Nature communications.

[35]  R. Ruskov,et al.  Sound-based analogue of cavity quantum electrodynamics in silicon. , 2011, Physical review letters.

[36]  T. Brandes,et al.  Spontaneous Emission of Phonons by Coupled Quantum Dots , 1999, cond-mat/9908397.

[37]  M. Plenio,et al.  Hybrid sensors based on colour centres in diamond and piezoactive layers , 2014, Nature Communications.

[38]  Carmichael,et al.  Quantum trajectory theory for cascaded open systems. , 1993, Physical review letters.

[39]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[40]  R. J. Schoelkopf,et al.  Resolving photon number states in a superconducting circuit , 2007, Nature.

[41]  Anton Frisk Kockum,et al.  Designing frequency-dependent relaxation rates and Lamb shifts for a giant artificial atom , 2014, 1406.0350.

[42]  D Budker,et al.  Solid-state electronic spin coherence time approaching one second , 2012, Nature Communications.

[43]  S. Girvin,et al.  Wiring up quantum systems , 2008, Nature.

[44]  D. Loss,et al.  Prospects for Spin-Based Quantum Computing in Quantum Dots , 2012, 1204.5917.

[45]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[46]  W. J. Tanski GHz SAW Resonators , 1979 .

[47]  G. Burkard,et al.  Ultra-long distance interaction between spin qubits , 2006, cond-mat/0603119.

[48]  Paulo V. Santos,et al.  Intense acoustic beams for photonic modulation , 2004, SPIE Photonics Europe.

[49]  F. Calle,et al.  Super-High-Frequency SAW Resonators on AlN/Diamond , 2012, IEEE Electron Device Letters.

[50]  Shimon Kolkowitz,et al.  Coherent Sensing of a Mechanical Resonator with a Single-Spin Qubit , 2012, Science.

[51]  David Leibrandt,et al.  Suppression of heating rates in cryogenic surface-electrode ion traps. , 2007, Physical review letters.

[52]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[53]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[54]  Jacob M. Taylor,et al.  Circuit quantum electrodynamics with a spin qubit , 2012, Nature.

[55]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[56]  M. M. de Lima,et al.  Modulation of photonic structures by surface acoustic waves , 2005 .

[57]  A. A. Oliner,et al.  Waveguides for surface waves , 1978 .

[58]  Paulo V. Santos,et al.  Local probing of propagating acoustic waves in a gigahertz echo chamber , 2011, Nature Physics.

[59]  R. Ruskov,et al.  Catching the quantum sound wave , 2014, Science.

[60]  J. Taylor,et al.  Capacitively coupled singlet-triplet qubits in the double charge resonant regime , 2014, 1408.4740.

[61]  Godfrey Gumbs,et al.  SCREENING OF THE SURFACE-ACOUSTIC-WAVE POTENTIAL BY A METAL GATE AND THE QUANTIZATION OF THE ACOUSTOELECTRIC CURRENT IN A NARROW CHANNEL , 1998 .

[62]  P. Zoller,et al.  Photonic channels for quantum communication , 1998, Science.

[63]  M. N. Makhonin,et al.  Nuclear spin effects in semiconductor quantum dots. , 2013, Nature materials.

[64]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[65]  P. Zoller,et al.  Phonon-induced spin-spin interactions in diamond nanostructures: application to spin squeezing. , 2013, Physical review letters.

[66]  D. Loss,et al.  Phonon-mediated decay of singlet-triplet qubits in double quantum dots (vol 89, 085410, 2014) , 2013, 1311.2197.

[67]  R. Ruskov,et al.  On-chip cavity quantum phonodynamics with an acceptor qubit in silicon , 2012, 1208.1776.

[68]  Ronald Hanson,et al.  Coherent manipulation of single spins in semiconductors , 2008, Nature.

[69]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[70]  J. Raimond,et al.  Manipulating quantum entanglement with atoms and photons in a cavity , 2001 .

[71]  F. Nori,et al.  Strong coupling of a spin qubit to a superconducting stripline cavity , 2012, 1204.4732.

[72]  Supriyo Datta,et al.  Surface Acoustic Wave Devices , 1986 .

[73]  H. J. Kimble,et al.  Photon blockade in an optical cavity with one trapped atom , 2006, QELS 2006.

[74]  A. Yacoby,et al.  Charge noise spectroscopy using coherent exchange oscillations in a singlet-triplet qubit. , 2012, Physical review letters.

[75]  御子柴宣夫 B. A. Auld : Acoustic Fields and Waves in Solids, Vol. 1 and 2, John Wiley, New York and London, 1973, 2 vols., 23.5×16cm. , 1974 .

[76]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[77]  D. Fang,et al.  Love waves in layered piezoelectric/piezomagnetic structures , 2008 .

[78]  A. Yacoby,et al.  Demonstration of Entanglement of Electrostatically Coupled Singlet-Triplet Qubits , 2012, Science.

[79]  R. C. Williamson,et al.  Experimental Exploration of the Limits of Achievable Q of Grooved Surface-Wave Resonators , 1975 .

[80]  J. Cirac,et al.  IDEAL QUANTUM COMMUNICATION OVER NOISY CHANNELS : A QUANTUM OPTICAL IMPLEMENTATION , 1997, quant-ph/9702036.

[81]  L. Vandersypen,et al.  Locking electron spins into magnetic resonance by electron–nuclear feedback , 2009, 0902.2659.

[82]  G. Milburn,et al.  Quantum interface between an electrical circuit and a single atom. , 2011, Physical review letters.

[83]  P. Rabl,et al.  Measuring mechanical motion with a single spin , 2012, 1205.6740.

[84]  W. G. van der Wiel,et al.  Ultrahigh-frequency surface acoustic wave transducers on ZnO/SiO2/Si using nanoimprint lithography , 2012, Nanotechnology.

[85]  B. Auld,et al.  Acoustic fields and waves in solids , 1973 .

[86]  Michelle Y. Simmons,et al.  Silicon quantum electronics , 2012, 1206.5202.

[87]  Wenlan Chen,et al.  Vacuum-induced transparency , 2011, CLEO 2012.

[88]  Amir Yacoby,et al.  Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs , 2011 .

[89]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.