An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells.

[1]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.

[2]  Rudolf Jaenisch,et al.  One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[3]  Seung Woo Cho,et al.  Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease , 2013, Nature Biotechnology.

[4]  Erin L. Doyle,et al.  Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting , 2011, Nucleic acids research.

[5]  George M. Church,et al.  Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems , 2013, Nucleic acids research.

[6]  E. Kroon,et al.  Efficient differentiation of human embryonic stem cells to definitive endoderm , 2005, Nature Biotechnology.

[7]  J. Keith Joung,et al.  TALENs: a widely applicable technology for targeted genome editing , 2012, Nature Reviews Molecular Cell Biology.

[8]  Chad A. Cowan,et al.  Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. , 2013, Cell stem cell.

[9]  R. Jaenisch,et al.  Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases , 2009, Nature Biotechnology.

[10]  Kevin Kim,et al.  A TALEN genome-editing system for generating human stem cell-based disease models. , 2013, Cell stem cell.

[11]  David R. Liu,et al.  High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity , 2013, Nature Biotechnology.

[12]  Jeffrey C. Miller,et al.  A rapid and general assay for monitoring endogenous gene modification. , 2010, Methods in molecular biology.

[13]  Mario R. Capecchi,et al.  Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century , 2005, Nature Reviews Genetics.

[14]  Luke A. Gilbert,et al.  CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes , 2013, Cell.

[15]  J. Sklar,et al.  Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases , 1995, Nature Genetics.

[16]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[17]  Jeffry D. Sander,et al.  Efficient In Vivo Genome Editing Using RNA-Guided Nucleases , 2013, Nature Biotechnology.

[18]  David R. Liu,et al.  Conversion of 5-Methylcytosine to 5- Hydroxymethylcytosine in Mammalian DNA by the MLL Partner TET1 , 2009 .

[19]  E. Kroon,et al.  Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo , 2008, Nature Biotechnology.

[20]  Mario R. Capecchi,et al.  High frequency targeting of genes to specific sites in the mammalian genome , 1986, Cell.

[21]  Nick C Fox,et al.  Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease , 2013, Nature Genetics.

[22]  Elo Leung,et al.  A TALE nuclease architecture for efficient genome editing , 2011, Nature Biotechnology.

[23]  R. Pedersen,et al.  Robust, Persistent Transgene Expression in Human Embryonic Stem Cells Is Achieved with AAVS1‐Targeted Integration , 2008, Stem cells.

[24]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[25]  J. Shendure,et al.  Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data , 2011, Nature Reviews Genetics.

[26]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[27]  Jin-Soo Kim,et al.  Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases , 2014, Genome research.

[28]  Wenjun Guo,et al.  Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2 , 2008, Nature Biotechnology.

[29]  Yi Zhang,et al.  Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification , 2010, Nature.

[30]  G. Church,et al.  CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering , 2013, Nature Biotechnology.

[31]  Danwei Huangfu,et al.  Human pluripotent stem cells: an emerging model in developmental biology , 2013, Development.

[32]  J. Haines,et al.  Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. , 1993, Science.

[33]  R. Jaenisch,et al.  Gene targeting in human pluripotent cells. , 2010, Cold Spring Harbor symposia on quantitative biology.

[34]  Chad A. Cowan,et al.  Derivation of embryonic stem-cell lines from human blastocysts. , 2004, The New England journal of medicine.

[35]  Melissa M. Harrison,et al.  Genome Engineering of Drosophila with the CRISPR RNA-Guided Cas9 Nuclease , 2013, Genetics.

[36]  Susan Lindquist,et al.  Generation of Isogenic Pluripotent Stem Cells Differing Exclusively at Two Early Onset Parkinson Point Mutations , 2011, Cell.

[37]  Luke A. Gilbert,et al.  Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression , 2013, Cell.

[38]  Jennifer Doudna,et al.  RNA-programmed genome editing in human cells , 2013, eLife.

[39]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[40]  Neville E Sanjana,et al.  A transcription activator-like effector toolbox for genome engineering , 2012, Nature Protocols.

[41]  David A. Scott,et al.  Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity , 2013, Cell.

[42]  K. Thomas,et al.  Targeting of genes to specific sites in the mammalian genome. , 1986, Cold Spring Harbor symposia on quantitative biology.

[43]  E. Rebar,et al.  Genome editing with engineered zinc finger nucleases , 2010, Nature Reviews Genetics.

[44]  J. Keith Joung,et al.  High frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells , 2013, Nature Biotechnology.