Role of the blood-brain barrier in the formation of long-chain omega-3 and omega-6 fatty acids from essential fatty acid precursors.
暂无分享,去创建一个
Elongated, more highly polyunsaturated derivatives of linoleic acid (18:2 omega-6) and linolenic acid (18:3 omega-3) accumulate in brain, but their sites of synthesis and mechanism of entry are not well characterized. To investigate the role of the blood-brain barrier in this process, cultured murine cerebromicrovascular endothelia were incubated with [1-14C]18:2 omega-6 or [1-14C]18:3 omega-3 and their elongation/desaturation products determined. The major metabolite of 18:2 omega-6 was 20:4 omega-6, whereas the primary product from 18:3 omega-3 was 20:5 omega-3. Although these products were found primarily in cell lipids, they were also released from the cells and gradually accumulated in the extracellular fluid. Eicosanoid production was observed from the 20:4 omega-6 and 20:5 omega-3 that were formed. No 22:5 omega-6 or 22:6 omega-3 fatty acids were detected, suggesting that these endothelial cells are not the site of the final desaturation step. Although the uptake of 18:3 omega-3 and 18:2 omega-6 was nearly identical, 18:3 omega-3 was more extensively elongated and desaturated. Competition experiments demonstrated a preference for 18:3 omega-3 by the elongation/desaturation pathway. These findings suggest that the blood-brain barrier can play an important role in the elongation and desaturation of omega-3 and omega-6 essential fatty acids during their transfer from the circulation into the brain.