Stationary queue-length characteristics in queues with delayed feedback

A class of two-node queueing networks with general stationary ergodic governing sequence is considered. This means that, in particular, a non-Poissonian arrival process and dependent service times, as well as a non-Bernoulli feedback mechanism are admitted. A mixing condition ensures that the limiting distributions of the number of customers in the nodes observed in continuous time as well as at certain embedded epochs can be expressed by the Palm distributions of appropriately chosen marked point processes. This gives the possibility of connecting the classical concept of embedding with a general point-process approach. Furthermore, it leads to simple proofs of relationships between the limiting distributions. An example is given to illustrate how these relationships can be used to derive explicit formulas for various stationary queueing characteristics.