Division and adaptation to host nutritional environment of apicomplexan parasites depend on apicoplast lipid metabolic plasticity and host organelles remodelling

Apicomplexan parasites are unicellular eukaryotes responsible for major human diseases including malaria and toxoplasmosis. Apicomplexan parasites must obtain and combine lipids both from host cell scavenging and de novo synthesis to maintain parasite propagation and survival within their human host. Major questions on the actual role for each lipid source or how these are regulated upon fluctuating host nutritional conditions remain unanswered. Characterization of an apicoplast acyltransferase TgATS2, shows that the apicoplast provides local (lyso)phosphatidic acid balance, which is required for the recruitment of a novel dynamin (TgDrpC) critical during parasite cytokinesis. Disruption of TgATS2 led parasites to shift metabolic lipid acquisition from de novo synthesis towards host scavenging. Importantly, both lipid scavenging and de novo synthesis pathways exhibit major metabolic and cellular plasticity upon sensing host lipid-deprived environments through concomitant (i) up-regulation of de novo fatty acid synthesis capacities in the apicoplast, and (ii) parasite-driven host cell remodelling to generate multi-membrane-bound structures from host organelles that are imported towards the parasite.

[1]  Randall L. Lindquist,et al.  Non-competitive resource exploitation within mosquito shapes within-host malaria infectivity and virulence , 2018, Nature Communications.

[2]  J. Rayner,et al.  Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis , 2018, Science.

[3]  Yoshiki Yamaryo-Botté,et al.  Toxoplasma gondii acetyl-CoA synthetase is involved in fatty acid elongation (of long fatty acid chains) during tachyzoite life stages[S] , 2018, Journal of Lipid Research.

[4]  D. Wirth,et al.  Lysophosphatidylcholine Regulates Sexual Stage Differentiation in the Human Malaria Parasite Plasmodium falciparum , 2017, Cell.

[5]  I. Coppens,et al.  The parasite Toxoplasma sequesters diverse Rab host vesicles within an intravacuolar network , 2017, The Journal of cell biology.

[6]  M. Mota,et al.  Dietary alterations modulate susceptibility to Plasmodium infection , 2017, Nature Microbiology.

[7]  I. Coppens,et al.  Host lipid droplets: An important source of lipids salvaged by the intracellular parasite Toxoplasma gondii , 2017, PLoS pathogens.

[8]  M. Llinás,et al.  Nutrient sensing modulates malaria parasite virulence , 2017, Nature.

[9]  M. Reese,et al.  The coccidian parasites Toxoplasma and Neospora dysregulate mammalian lipid droplet biogenesis , 2017, The Journal of Biological Chemistry.

[10]  Y. Xiong,et al.  Destabilization of Fatty Acid Synthase by Acetylation Inhibits De Novo Lipogenesis and Tumor Cell Growth. , 2016, Cancer research.

[11]  Kara L. Cerveny,et al.  Coincident Phosphatidic Acid Interaction Restrains Drp1 in Mitochondrial Division. , 2016, Molecular cell.

[12]  Tim Wang,et al.  A Genome-wide CRISPR Screen in Toxoplasma Identifies Essential Apicomplexan Genes , 2016, Cell.

[13]  G. McFadden,et al.  Characterization of the Plasmodium falciparum and P. berghei glycerol 3‐phosphate acyltransferase involved in FASII fatty acid utilization in the malaria parasite apicoplast , 2016, Cellular microbiology.

[14]  G. McFadden,et al.  Apicoplast-Localized Lysophosphatidic Acid Precursor Assembly Is Required for Bulk Phospholipid Synthesis in Toxoplasma gondii and Relies on an Algal/Plant-Like Glycerol 3-Phosphate Acyltransferase , 2016, PLoS Pathogens.

[15]  D. Soldati-Favre,et al.  Phosphatidic Acid-Mediated Signaling Regulates Microneme Secretion in Toxoplasma. , 2016, Cell host & microbe.

[16]  J. Boothroyd,et al.  A Novel Secreted Protein, MYR1, Is Central to Toxoplasma’s Manipulation of Host Cells , 2016, mBio.

[17]  Laura F. Dagley,et al.  Regulation of Starch Stores by a Ca(2+)-Dependent Protein Kinase Is Essential for Viable Cyst Development in Toxoplasma gondii. , 2015, Cell host & microbe.

[18]  Kelly V. Ruggles,et al.  Profiling the Essential Nature of Lipid Metabolism in Asexual Blood and Gametocyte Stages of Plasmodium falciparum. , 2015, Cell host & microbe.

[19]  M. McConville,et al.  The intracellular parasite Toxoplasma gondii depends on the synthesis of long‐chain and very long‐chain unsaturated fatty acids not supplied by the host cell , 2015, Molecular microbiology.

[20]  C. Biot,et al.  Ciprofloxacin Derivatives Affect Parasite Cell Division and Increase the Survival of Mice Infected with Toxoplasma gondii , 2015, PloS one.

[21]  Rodrigo Lopez,et al.  The EMBL-EBI bioinformatics web and programmatic tools framework , 2015, Nucleic Acids Res..

[22]  N. Westwood,et al.  Efficient Genome Engineering of Toxoplasma gondii Using CRISPR/Cas9 , 2014, PloS one.

[23]  M. Gatton,et al.  Fatty Acid Synthesis and Pyruvate Metabolism Pathways Remain Active in Dihydroartemisinin-Induced Dormant Ring Stages of Plasmodium falciparum , 2014, Antimicrobial Agents and Chemotherapy.

[24]  L. Tilley,et al.  The Apical Complex Provides a Regulated Gateway for Secretion of Invasion Factors in Toxoplasma , 2014, PLoS pathogens.

[25]  A. Bougdour,et al.  Toxoplasma exports dense granule proteins beyond the vacuole to the host cell nucleus and rewires the host genome expression , 2014, Cellular microbiology.

[26]  R. Moritz,et al.  Enzymes involved in plastid‐targeted phosphatidic acid synthesis are essential for Plasmodium yoelii liver‐stage development , 2014, Molecular microbiology.

[27]  G. McFadden,et al.  Atypical lipid composition in the purified relict plastid (apicoplast) of malaria parasites , 2013, Proceedings of the National Academy of Sciences.

[28]  C. Biot,et al.  The apicoplast: a key target to cure malaria. , 2012, Current pharmaceutical design.

[29]  A. Kastaniotis,et al.  Apicoplast and Endoplasmic Reticulum Cooperate in Fatty Acid Biosynthesis in Apicomplexan Parasite Toxoplasma gondii* , 2011, The Journal of Biological Chemistry.

[30]  John J H Shin,et al.  Putting the pH into phosphatidic acid signaling , 2011, BMC Biology.

[31]  Michael S. Behnke,et al.  A Systematic Screen to Discover and Analyze Apicoplast Proteins Identifies a Conserved and Essential Protein Import Factor , 2011, PLoS pathogens.

[32]  E. Maréchal,et al.  Chemical inhibitors of monogalactosyldiacylglycerol synthases in Arabidopsis thaliana. , 2011, Nature chemical biology.

[33]  Joseph L. DeRisi,et al.  Chemical Rescue of Malaria Parasites Lacking an Apicoplast Defines Organelle Function in Blood-Stage Plasmodium falciparum , 2011, PLoS biology.

[34]  S. Chasserot-Golaz,et al.  Lipid Dynamics in Exocytosis , 2010, Cellular and Molecular Neurobiology.

[35]  D. Ferguson,et al.  A Toxoplasma MORN1 Null Mutant Undergoes Repeated Divisions but Is Defective in Basal Assembly, Apicoplast Division and Cytokinesis , 2010, PloS one.

[36]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[37]  B. Humbel,et al.  A Novel Dynamin-Related Protein Has Been Recruited for Apicoplast Fission in Toxoplasma gondii , 2009, Current Biology.

[38]  F. Frischknecht,et al.  A Dynamin Is Required for the Biogenesis of Secretory Organelles in Toxoplasma gondii , 2009, Current Biology.

[39]  M. Huynh,et al.  Tagging of Endogenous Genes in a Toxoplasma gondii Strain Lacking Ku80 , 2009, Eukaryotic Cell.

[40]  A. Vaughan,et al.  Type II fatty acid synthesis is essential only for malaria parasite late liver stage development , 2008, Cellular microbiology.

[41]  Joel S. Freundlich,et al.  The fatty acid biosynthesis enzyme FabI plays a key role in the development of liver-stage malarial parasites. , 2008, Cell host & microbe.

[42]  W. Balch,et al.  The Lysophospholipid Acyltransferase Antagonist CI‐976 Inhibits a Late Step in COPII Vesicle Budding , 2008, Traffic.

[43]  Jean-Michel Claverie,et al.  Phylogeny.fr: robust phylogenetic analysis for the non-specialist , 2008, Nucleic Acids Res..

[44]  Xinxia Peng,et al.  A combined transcriptome and proteome survey of malaria parasite liver stages , 2008, Proceedings of the National Academy of Sciences.

[45]  A. Regev,et al.  Distinct physiological states of Plasmodium falciparum in malaria-infected patients , 2007, Nature.

[46]  C. Roberts,et al.  Lipidomic analysis of Toxoplasma gondii reveals unusual polar lipids. , 2007, Biochemistry.

[47]  Yasutaro Fujita,et al.  Regulation of fatty acid metabolism in bacteria , 2007, Molecular microbiology.

[48]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[49]  T. Mitamura,et al.  Oleic acid is indispensable for intraerythrocytic proliferation of Plasmodium falciparum , 2007, Parasitology.

[50]  B. Striepen,et al.  Apicoplast fatty acid synthesis is essential for organelle biogenesis and parasite survival in Toxoplasma gondii , 2006, Proceedings of the National Academy of Sciences.

[51]  T. Mitamura,et al.  Intraerythrocytic Plasmodium falciparum utilize a broad range of serum-derived fatty acids with limited modification for their growth , 2006, Parasitology.

[52]  E. Maréchal,et al.  Toxoplasma gondii acyl-lipid metabolism: de novo synthesis from apicoplast-generated fatty acids versus scavenging of host cell precursors. , 2006, The Biochemical journal.

[53]  Harvey T. McMahon,et al.  Membrane curvature and mechanisms of dynamic cell membrane remodelling , 2005, Nature.

[54]  M. Kozlov,et al.  Spontaneous curvature of phosphatidic acid and lysophosphatidic acid. , 2005, Biochemistry.

[55]  L. Sibley,et al.  Host cells: mobilizable lipid resources for the intracellular parasite Toxoplasma gondii. , 2002, Journal of cell science.

[56]  S. Schmid,et al.  Dynamin is membrane-active: lipid insertion is induced by phosphoinositides and phosphatidic acid. , 2000, Biochemistry.

[57]  T. Mitamura,et al.  Serum factors governing intraerythrocytic development and cell cycle progression of Plasmodium falciparum. , 2000, Parasitology international.

[58]  A. Podtelejnikov,et al.  Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid , 1999, Nature.

[59]  D. Roos,et al.  Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[60]  R. Parton,et al.  A lipid associated with the antiphospholipid syndrome regulates endosome structure and function , 1998, Nature.

[61]  J. Ohlrogge,et al.  Lipid biosynthesis. , 1995, The Plant cell.

[62]  J. Boothroyd,et al.  Gene replacement in Toxoplasma gondii with chloramphenicol acetyltransferase as selectable marker. , 1993, Science.

[63]  J. Coleman Characterization of Escherichia coli cells deficient in 1-acyl-sn-glycerol-3- phosphate acyltransferase activity. , 1990, The Journal of biological chemistry.

[64]  W. Trager,et al.  Human malaria parasites in continuous culture. , 1976, Science.

[65]  Y. Adachi,et al.  Phosphatidic Acid and Cardiolipin Coordinate Mitochondrial Dynamics. , 2018, Trends in cell biology.

[66]  S. Clarke,et al.  Coordinate suppression of liver acetyl-CoA carboxylase and fatty acid synthetase by polyunsaturated fat. , 1981, The Journal of nutrition.