Fast Algorithms for Hyperspectral Diffuse Optical Tomography
暂无分享,去创建一个
[1] Ilse C. F. Ipsen,et al. Rank-Deficient Nonlinear Least Squares Problems and Subset Selection , 2011, SIAM J. Numer. Anal..
[2] K. T. Moesta,et al. Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography. , 2004, Physics in medicine and biology.
[3] Sergej Rjasanow,et al. Adaptive Low-Rank Approximation of Collocation Matrices , 2003, Computing.
[4] Misha Elena Kilmer,et al. Recycling Subspace Information for Diffuse Optical Tomography , 2005, SIAM J. Sci. Comput..
[5] Anders Logg,et al. DOLFIN: Automated finite element computing , 2010, TOMS.
[6] Eric de Sturler,et al. Recycling Krylov Subspaces for Sequences of Linear Systems , 2006, SIAM J. Sci. Comput..
[7] Vadim A. Markel,et al. Inverse problem in optical diffusion tomography. III. Inversion formulas and singular-value decomposition. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.
[8] D. Boas. A fundamental limitation of linearized algorithms for diffuse optical tomography , 1998 .
[9] Eric L. Miller,et al. Hyperspectral image reconstruction for diffuse optical tomography , 2011, Biomedical optics express.
[10] K. T. Moesta,et al. Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients , 2005, Physics in medicine and biology.
[11] Eric L. Miller,et al. Parametric Level Set Methods for Inverse Problems , 2010, SIAM J. Imaging Sci..
[12] Wolfgang Hackbusch. New estimates for the recursive low-rank truncation of block-structured matrices , 2016, Numerische Mathematik.
[13] C. Chui,et al. Article in Press Applied and Computational Harmonic Analysis a Randomized Algorithm for the Decomposition of Matrices , 2022 .
[14] Emílio C. N. Silva,et al. Recycling Krylov subspaces for efficient large-scale electrical impedance tomography , 2010 .
[15] Xiaoye S. Li,et al. A Supernodal Approach to Incomplete LU Factorization with Partial Pivoting , 2011, TOMS.
[16] Michael K. Ng,et al. Galerkin Projection Methods for Solving Multiple Linear Systems , 1999, SIAM J. Sci. Comput..
[17] Per-Gunnar Martinsson,et al. Randomized algorithms for the low-rank approximation of matrices , 2007, Proceedings of the National Academy of Sciences.
[18] Karl Meerbergen,et al. Accelerating Optimization of Parametric Linear Systems by Model Order Reduction , 2013, SIAM J. Optim..
[19] Valeria Simoncini,et al. Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..
[20] S R Arridge,et al. Optical tomographic reconstruction in a complex head model using a priori region boundary information. , 1999, Physics in medicine and biology.
[21] S. Arridge. Optical tomography in medical imaging , 1999 .
[22] Christophe Geuzaine,et al. Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .
[23] E. Miller,et al. Quantitative spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information , 2005, Physics in medicine and biology.
[24] Eric L. Miller,et al. Analysis and Exploitation of Matrix Structure Arising in Linearized Optical Tomographic Imaging , 2007, SIAM J. Matrix Anal. Appl..
[25] Karen Willcox,et al. A Survey of Model Reduction Methods for Parametric Systems ∗ , 2013 .
[26] David F. Gleich,et al. Spectral Methods for Parameterized Matrix Equations , 2009, SIAM J. Matrix Anal. Appl..
[27] Daniel Kressner,et al. Low-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems , 2011, SIAM J. Matrix Anal. Appl..
[28] B. Tromberg,et al. Spatial variations in optical and physiological properties of healthy breast tissue. , 2002, Journal of biomedical optics.
[29] E. Sturler,et al. Large‐scale topology optimization using preconditioned Krylov subspace methods with recycling , 2007 .
[30] S. Goreinov,et al. A Theory of Pseudoskeleton Approximations , 1997 .
[31] S. Arridge,et al. Optical tomography: forward and inverse problems , 2009, 0907.2586.
[32] Mario Bebendorf,et al. Approximation of boundary element matrices , 2000, Numerische Mathematik.
[33] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[34] E. Miller,et al. Parametric level set reconstruction methods for hyperspectral diffuse optical tomography , 2012, Biomedical optics express.
[35] Eric L. Miller,et al. Parametric estimation of 3D tubular structures for diffuse optical tomography , 2013, Biomedical optics express.
[36] K. T. Moesta,et al. Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas , 2005, Physics in medicine and biology.
[37] George Biros,et al. FaIMS: A fast algorithm for the inverse medium problem with multiple frequencies and multiple sources for the scalar Helmholtz equation , 2012, J. Comput. Phys..
[38] Misha Elena Kilmer,et al. A Regularized Gauss-Newton Trust Region Approach to Imaging in Diffuse Optical Tomography , 2011, SIAM J. Sci. Comput..