Error Sensitivity to Environmental Noise in Quantum Circuits for Chemical State Preparation.

Calculating molecular energies is likely to be one of the first useful applications to achieve quantum supremacy, performing faster on a quantum than a classical computer. However, if future quantum devices are to produce accurate calculations, errors due to environmental noise and algorithmic approximations need to be characterized and reduced. In this study, we use the high performance qHiPSTER software to investigate the effects of environmental noise on the preparation of quantum chemistry states. We simulated 18 16-qubit quantum circuits under environmental noise, each corresponding to a unitary coupled cluster state preparation of a different molecule or molecular configuration. Additionally, we analyze the nature of simple gate errors in noise-free circuits of up to 40 qubits. We find that, in most cases, the Jordan-Wigner (JW) encoding produces smaller errors under a noisy environment as compared to the Bravyi-Kitaev (BK) encoding. For the JW encoding, pure dephasing noise is shown to produce substantially smaller errors than pure relaxation noise of the same magnitude. We report error trends in both molecular energy and electron particle number within a unitary coupled cluster state preparation scheme, against changes in nuclear charge, bond length, number of electrons, noise types, and noise magnitude. These trends may prove to be useful in making algorithmic and hardware-related choices for quantum simulation of molecular energies.

[1]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[2]  Ashley Montanaro,et al.  Quantum algorithms: an overview , 2015, npj Quantum Information.

[3]  Sarah E. Sofia,et al.  The Bravyi-Kitaev transformation: Properties and applications , 2015 .

[4]  Ryan Babbush,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[5]  A. Wallraff,et al.  Exploring Interacting Quantum Many-Body Systems by Experimentally Creating Continuous Matrix Product States in Superconducting Circuits , 2015, 1508.06471.

[6]  M. Hastings,et al.  Progress towards practical quantum variational algorithms , 2015, 1507.08969.

[7]  R. Barends,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2014, Nature.

[8]  Alán Aspuru-Guzik,et al.  On the Chemical Basis of Trotter-Suzuki Errors in Quantum Chemistry Simulation , 2014, 1410.8159.

[9]  A. Retzker,et al.  Realization of a Quantum Integer-Spin Chain with Controllable Interactions , 2014, 1410.0937.

[10]  Alán Aspuru-Guzik,et al.  Exploiting Locality in Quantum Computation for Quantum Chemistry. , 2014, The journal of physical chemistry letters.

[11]  Krysta Marie Svore,et al.  Low-distance Surface Codes under Realistic Quantum Noise , 2014, ArXiv.

[12]  Daniel Nigg,et al.  A quantum information processor with trapped ions , 2013, 1308.3096.

[13]  Michael R. Geller,et al.  Efficient error models for fault-tolerant architectures and the Pauli twirling approximation , 2013, 1305.2021.

[14]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[15]  P. Love,et al.  The Bravyi-Kitaev transformation for quantum computation of electronic structure. , 2012, The Journal of chemical physics.

[16]  Matthew L. Leininger,et al.  Psi4: an open‐source ab initio electronic structure program , 2012 .

[17]  Sean Barrett,et al.  Simulating quantum fields with cavity QED. , 2012, Physical review letters.

[18]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[19]  J. Pittner,et al.  Quantum computing applied to calculations of molecular energies: CH2 benchmark. , 2010, The Journal of chemical physics.

[20]  J. Whitfield,et al.  Simulation of electronic structure Hamiltonians using quantum computers , 2010, 1001.3855.

[21]  W. Winiwarter,et al.  How a century of ammonia synthesis changed the world , 2008 .

[22]  Alán Aspuru-Guzik,et al.  Quantum algorithm for obtaining the energy spectrum of molecular systems. , 2008, Physical chemistry chemical physics : PCCP.

[23]  Angelo Bassi,et al.  Noise gates for decoherent quantum circuits , 2008, 0802.1639.

[24]  Joseph Emerson,et al.  Scalable protocol for identification of correctable codes , 2007, 0710.1900.

[25]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[26]  J. Preskill,et al.  Fault-tolerant quantum computation with long-range correlated noise. , 2005, Physical review letters.

[27]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[28]  C. Lomont THE HIDDEN SUBGROUP PROBLEM - REVIEW AND OPEN PROBLEMS , 2004, quant-ph/0411037.

[29]  A. Bassi Stochastic Schrödinger equations with general complex Gaussian noises , 2002, quant-ph/0209170.

[30]  A. Kitaev,et al.  Fermionic Quantum Computation , 2000, quant-ph/0003137.

[31]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[32]  P. Knight,et al.  LINEAR QUANTUM TRAJECTORIES : APPLICATIONS TO CONTINUOUS PROJECTION MEASUREMENTS , 1998, quant-ph/9801042.

[33]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[34]  P. Knight,et al.  The Quantum jump approach to dissipative dynamics in quantum optics , 1997, quant-ph/9702007.

[35]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[36]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[37]  N. Makri,et al.  TENSOR PROPAGATOR FOR ITERATIVE QUANTUM TIME EVOLUTION OF REDUCED DENSITY MATRICES. I: THEORY , 1995 .

[38]  DiVincenzo,et al.  Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[39]  R. Fox,et al.  Gaussian stochastic processes in physics , 1978 .

[40]  Charles Clos,et al.  A study of non-blocking switching networks , 1953 .

[41]  E. Wigner,et al.  Über das Paulische Äquivalenzverbot , 1928 .

[42]  Manuela Herman,et al.  Quantum Computing: A Gentle Introduction , 2011 .

[43]  Doan Binh Trieu Large-scale simulations of error prone quantum computation devices , 2009 .

[44]  Andrew G. Taube,et al.  New perspectives on unitary coupled‐cluster theory , 2006 .

[45]  N. Makri,et al.  Tensor propagator for iterative quantum time evolution of reduced density matrices. II. Numerical methodology , 1995 .

[46]  W. Warren Advances in magnetic and optical resonance , 1990 .

[47]  E. Wigner,et al.  About the Pauli exclusion principle , 1928 .