Light extraction with dielectric nanoantenna arrays.

SiO(2) and TiO(2) dielectric nanoparticles are arranged in linear arrays, supporting collective Bragg modes, and employed as dielectric nanoantennae. Electrodynamic calculations show that strong, tunable, and lossless light extraction is obtained in a wide spectral range, including UV, visible, and near-infrared regions, in opposition to poor enhancement features of isolated dielectric nanoparticles. Emission quantum efficiencies comparable to those obtained employing metallic structures are achieved, with strong emission enhancement even for poor emitter position and dipole moment orientation.

[1]  J. Baumberg,et al.  Easily coupled whispering gallery plasmons in dielectric nanospheres embedded in gold films. , 2006, Physical review letters.

[2]  Olle Inganäs,et al.  Trapping light with micro lenses in thin film organic photovoltaic cells. , 2008, Optics express.

[3]  Hongxing Xu,et al.  Multiple-particle nanoantennas for enormous enhancement and polarization control of light emission. , 2009, ACS nano.

[4]  H. Atwater,et al.  Polarization-selective plasmon-enhanced silicon quantum-dot luminescence. , 2006, Nano letters (Print).

[5]  V. Kravets,et al.  Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. , 2008, Physical review letters.

[6]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[7]  B. Sanders,et al.  Collective spontaneous emission from a line of atoms , 2003 .

[8]  Lukas Novotny,et al.  Spectral dependence of single molecule fluorescence enhancement. , 2007, Optics express.

[9]  O. Muskens,et al.  Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. , 2007, Nano letters.

[10]  R. Ruppin,et al.  Decay of an excited molecule near a small metal sphere , 1982 .

[11]  R. V. Van Duyne,et al.  A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. , 2002, Journal of the American Chemical Society.

[12]  Detlef Hommel,et al.  Superradiance of quantum dots , 2007 .

[13]  A. Polman,et al.  Plasmon-enhanced erbium luminescence , 2006 .

[14]  Paolo Mazzoldi,et al.  Interacting metal nanoparticles: Optical properties from nanoparticle dimers to core-satellite systems , 2007 .

[15]  S. Silver Microwave antenna theory and design , 1949 .

[16]  George C Schatz,et al.  Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. , 2004, The Journal of chemical physics.

[17]  V. Bello,et al.  Local-field enhancement and plasmon tuning in bimetallic nanoplanets. , 2007, Optics express.

[18]  N. Lewis,et al.  Plasmon-Enhanced Photoluminescence of Silicon Quantum Dots: Simulation and Experiment , 2007 .

[19]  P Mazzoldi,et al.  Tunable, directional and wavelength selective plasmonic nanoantenna arrays , 2009, Nanotechnology.

[20]  George C. Schatz,et al.  A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles , 2004 .

[21]  E. Schonbrun,et al.  Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays , 2008 .

[22]  Nathan S. Lewis,et al.  Spectral tuning of plasmon-enhanced silicon quantum dot luminescence , 2006 .

[23]  Yu-lin Xu,et al.  Efficient Evaluation of Vector Translation Coefficients in Multiparticle Light-Scattering Theories , 1998 .

[24]  T. Klar,et al.  Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. , 2008, Physical review letters.

[25]  R. Brewer,et al.  Observation of superradiant and subradiant spontaneous emission of two trapped ions , 1996, Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[26]  G. von Plessen,et al.  Radiation damping in metal nanoparticle pairs. , 2007, Nano letters.

[27]  G. Schatz,et al.  Response to “Comment on ‘Silver nanoparticle array structures that produce remarkable narrow plasmon line shapes’ ” [J. Chem. Phys. 120, 10871 (2004)] , 2005 .

[28]  Y L Xu,et al.  Electromagnetic scattering by an aggregate of spheres: far field. , 1997, Applied optics.

[29]  A. Polman,et al.  Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model , 2007 .

[30]  Vahid Sandoghdar,et al.  Design of plasmonic nanoantennae for enhancing spontaneous emission. , 2007, Optics letters.

[31]  George C Schatz,et al.  Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays. , 2004, The Journal of chemical physics.

[32]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .

[33]  Yu-lin Xu,et al.  Fast evaluation of the Gaunt coefficients , 1996, Math. Comput..

[34]  Ulrich Hohenester,et al.  Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures , 2007 .

[35]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[37]  Tim H. Taminiau,et al.  Optical antennas direct single-molecule emission , 2008 .

[38]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[39]  W. Vos,et al.  Strong dependence of the optical emission rates of a two-level quantum emitter in any nanophotonic environment on the orientation of the transition dipole moment , 2009 .

[40]  Glenn P. Goodrich,et al.  Plasmonic enhancement of molecular fluorescence. , 2007, Nano letters.

[41]  W. Barnes,et al.  Diffractive coupling in gold nanoparticle arrays and the effect of disorder. , 2009, Optics letters.

[42]  V. R. Dantham,et al.  High-Q whispering gallery modes of doped and coated single microspheres and their effect on radiative rate , 2009 .

[43]  Richard P Van Duyne,et al.  Nanosphere lithography: fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV-visible extinction spectroscopy. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[44]  J. Gómez Rivas,et al.  Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. , 2009, Physical review letters.

[45]  Y L Xu,et al.  Electromagnetic scattering by an aggregate of spheres. , 1995, Applied optics.

[46]  W. Barnes,et al.  Collective resonances in gold nanoparticle arrays. , 2008, Physical review letters.

[47]  D. Mackowski,et al.  Analysis of radiative scattering for multiple sphere configurations , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[48]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[49]  Takashi Mukai,et al.  Surface-plasmon-enhanced light emitters based on InGaN quantum wells , 2004, Nature materials.