A Hybrid Algorithm for the Simple Cell Mapping Method in Multi-objective Optimization

This paper presents a hybrid gradient free-gradient (GFG) algorithm for the simple cell mapping (SCM) method for multi-objective optimization problems (MOPs). The SCM method is briefly reviewed in the context of the multi-objective optimization problems (MOPs). We present a mixed application of gradient free directed search and gradient search algorithms for the SCM method and discuss its potentials for higher dimensional MOPs. We present several numerical exmaples to demonstrate the effectiveness of the proposed hybrid algorithm. The examples include two simple geometric MOPs, an example with five design parameters, and a proportional-integral-derivative (PID) control design for a second order linear system.

[1]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[2]  张哉根,et al.  Leu-M , 1991 .

[3]  C. S. Hsu,et al.  Cell-to-Cell Mapping , 1987 .

[4]  Claus Hillermeier,et al.  Nonlinear Multiobjective Optimization , 2001 .

[5]  S. Daley,et al.  Optimal-tuning nonlinear PID control of hydraulic systems , 2000 .

[6]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[7]  Henryk Flashner,et al.  Spacecraft momentum unloading - The cell mapping approach , 1990 .

[8]  Shui-Shong Lu,et al.  Computer Disk File Track Accessing Controller Design based upon Cell-to-Cell Mapping , 1992, 1992 American Control Conference.

[9]  Pascal Bouvry,et al.  EVOLVE - A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation , 2013, EVOLVE.

[10]  C. Hsu,et al.  Cell-To-Cell Mapping A Method of Global Analysis for Nonlinear Systems , 1987 .

[11]  C. Hsu A discrete method of optimal control based upon the cell state space concept , 1985 .

[12]  Jörg Fliege,et al.  Steepest descent methods for multicriteria optimization , 2000, Math. Methods Oper. Res..

[13]  Massimiliano Vasile,et al.  Designing optimal low-thrust gravity-assist trajectories using space pruning and a multi-objective approach , 2009 .

[14]  S. Daley,et al.  Optimal-tuning PID controller design in the frequency domain with application to a rotary hydraulic system , 1999 .

[15]  Carlos A. Coello Coello,et al.  The Gradient Free Directed Search Method as Local Search within Multi-Objective Evolutionary Algorithms , 2012, EVOLVE.

[16]  S. Panda Multi-objective PID controller tuning for a FACTS-based damping stabilizer using Non-dominated Sorting Genetic Algorithm-II , 2011 .

[17]  H. Fawcett Manual of Political Economy , 1995 .

[18]  Luis G. Crespo,et al.  Stochastic Optimal Control via Bellman’s Principle , 2004 .

[19]  Ilya V. Kolmanovsky,et al.  Predictive energy management of a power-split hybrid electric vehicle , 2009, 2009 American Control Conference.

[20]  C. Hsu,et al.  Application of a cell-mapping method to optimal control problems , 1989 .

[21]  C. Hillermeier Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach , 2001 .

[22]  Jian-Qiao Sun,et al.  Fixed Final Time Optimal Control via Simple Cell Mapping , 2003 .

[23]  Fei-Yue Wang,et al.  A cell mapping method for general optimum trajectory planning of multiple robotic arms , 1994, Robotics Auton. Syst..

[24]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[25]  S. Schäffler,et al.  Stochastic Method for the Solution of Unconstrained Vector Optimization Problems , 2002 .

[26]  Massimiliano Vasile,et al.  Computing the Set of Epsilon-Efficient Solutions in Multiobjective Space Mission Design , 2011, J. Aerosp. Comput. Inf. Commun..

[27]  C. Hsu A theory of cell-to-cell mapping dynamical systems , 1980 .

[28]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[29]  Guo-Ping Liu,et al.  Multiobjective Optimisation And Control , 2008 .

[30]  Ming C. Leu,et al.  Planning optimal robot trajectories by cell mapping , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[31]  M. Dellnitz,et al.  Covering Pareto Sets by Multilevel Subdivision Techniques , 2005 .

[32]  Jian-Qiao Sun,et al.  Solution of Fixed Final State Optimal Control Problems via Simple Cell Mapping , 2000 .

[33]  Jian-Qiao Sun,et al.  Optimal control of target tracking with state constraints via cell mapping , 2001 .

[34]  Johannes Jahn,et al.  Multiobjective Search Algorithm with Subdivision Technique , 2006, Comput. Optim. Appl..