Arthrobacter scleromae sp. nov. Isolated from Human Clinical Specimens

ABSTRACT A gram-positive, coryneform bacterium was isolated from swollen scleromata of a dermatosis patient. An analysis of its phenotypic, chemotaxonomic, and genotypic characteristics showed that this bacterium is closely associated with Arthrobacter oxydans and Arthrobacter polychromogenes but that it belongs to a distinct species, for which the name Arthrobacter scleromae sp. nov. is proposed.

[1]  L. Steinhauer A Guide To The Identification Of The Genera Of Bacteria , 1960 .

[2]  V. Skerman A Guide to the Identification of the Genera of Bacteria , 1960 .

[3]  P. Doty,et al.  Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. , 1962, Journal of molecular biology.

[4]  W. Fitch,et al.  Construction of phylogenetic trees. , 1967, Science.

[5]  R. E. Buchanan A Guide to the Identification of the Genera of Bacteria with Methods and Digests of Generic Characteristics.: Second Edition. By V. B. D. Skerman. Williams and Wilkins, Baltimore. Price $9.75. 1967. , 1968 .

[6]  A. Holding,et al.  Chapter I Routine Biochemical Tests , 1971 .

[7]  K. Schleifer,et al.  Peptidoglycan types of bacterial cell walls and their taxonomic implications , 1972, Bacteriological reviews.

[8]  K. Schleifer,et al.  Peptidoglycan Types of Bacterial Cell Walls and Their Taxonomic Implications , 1973, Bacteriological reviews.

[9]  E. Bruck,et al.  National Committee for Clinical Laboratory Standards. , 1980, Pediatrics.

[10]  G. L. Lombard,et al.  Practical procedure for demonstrating bacterial flagella , 1982, Journal of clinical microbiology.

[11]  D. Minnikin,et al.  Chemical methods in bacterial systematics , 1985 .

[12]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[13]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[14]  K. Komagata,et al.  4 Lipid and Cell-Wall Analysis in Bacterial Systematics , 1988 .

[15]  Lawrence G. Wayne,et al.  International Committee on Systematic Bacteriology: Announcement of the Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics , 1988 .

[16]  Takayuki Ezaki,et al.  Fluorometric Deoxyribonucleic Acid-Deoxyribonucleic Acid Hybridization in Microdilution Wells as an Alternative to Membrane Filter Hybridization in which Radioisotopes Are Used To Determine Genetic Relatedness among Bacterial Strains , 1989 .

[17]  T. Amachi,et al.  Reclassification of two strains of Arthrobacter oxydans and proposal of Arthrobacter nicotinovorans sp. nov. , 1992, International journal of systematic bacteriology.

[18]  J. Felsenstein,et al.  PHYLIP: phylogenetic inference package version 3.5c. Distributed over the Internet , 1993 .

[19]  16S rDNA studies on members of Arthrobacter and Micrococcus: An aid for their future taxonomic restructing , 1994 .

[20]  J. Chun,et al.  A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. , 1995, International journal of systematic bacteriology.

[21]  E. Stackebrandt,et al.  Reclassification of Micrococcus agilis (Ali-Cohen 1889) to the genus Arthrobacter as Arthrobacter agilis comb. nov. and emendation of the genus Arthrobacter. , 1995, International journal of systematic bacteriology.

[22]  R. Kroppenstedt,et al.  Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa , 1996 .

[23]  M. Collins,et al.  Isolation of Arthrobacter spp. from clinical specimens and description of Arthrobacter cumminsii sp. nov. and Arthrobacter woluwensis sp. nov , 1996, Journal of clinical microbiology.

[24]  K. Bernard,et al.  Clinical microbiology of coryneform bacteria , 1997, Clinical microbiology reviews.

[25]  T. Ezaki,et al.  Description of Arthrobacter creatinolyticus sp. nov., isolated from human urine. , 1998, International journal of systematic bacteriology.

[26]  E. Stackebrandt,et al.  Arthrobacter chlorophenolicus sp. nov., a new species capable of degrading high concentrations of 4-chlorophenol. , 2000, International journal of systematic and evolutionary microbiology.

[27]  J. E. Olsen,et al.  DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA. , 2000, International journal of systematic and evolutionary microbiology.

[28]  M. Delmée,et al.  Identification of Arthrobacter oxydans, Arthrobacter luteolus sp. nov., and Arthrobacter albus sp. nov., isolated from human clinical specimens. , 2000, Journal of clinical microbiology.

[29]  F. Rainey,et al.  Enzymes of dimethylsulfone metabolism and the phylogenetic characterization of the facultative methylotrophs Arthrobacter sulfonivorans sp. nov., Arthrobacter methylotrophus sp. nov., and Hyphomicrobium sulfonivorans sp. nov , 2002, Archives of Microbiology.

[30]  M. Goodfellow,et al.  Amycolatopsis rubida sp. nov., a new Amycolatopsis species from soil. , 2001, International journal of systematic and evolutionary microbiology.

[31]  E. Stackebrandt,et al.  Arthrobacter roseus sp. nov., a psychrophilic bacterium isolated from an antarctic cyanobacterial mat sample. , 2002, International journal of systematic and evolutionary microbiology.

[32]  M. Nemec,et al.  Arthrobacter nitroguajacolicus sp. nov., a novel 4-nitroguaiacol-degrading actinobacterium. , 2004, International journal of systematic and evolutionary microbiology.

[33]  A. F. Schippers-Lammertse,et al.  Arthrobacter polychromogenes nov.spec., its pigments, and a bacteriophage of this species , 1963, Antonie van Leeuwenhoek.

[34]  J. Felsenstein Evolutionary trees from DNA sequences: A maximum likelihood approach , 2005, Journal of Molecular Evolution.

[35]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.